Nuprl Lemma : cubical-fun-ext_wf

X:j⊢. ∀A:{X ⊢ _}. ∀B:{X.A ⊢ _}. ∀f,g:{X ⊢ _:ΠB}. ∀e:{X ⊢ _:Π(Path_B app((f)p; q) app((g)p; q))}.
  (cubical-fun-ext(X;e) ∈ {X ⊢ _:(Path_Πg)})


Proof




Definitions occuring in Statement :  cubical-fun-ext: cubical-fun-ext(X;e) path-type: (Path_A b) cubical-app: app(w; u) cubical-pi: ΠB cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B squash: T prop: uimplies: supposing a guard: {T} implies:  Q true: True cubical-type: {X ⊢ _} cc-snd: q cc-fst: p csm-adjoin: (s;u) csm-ap-type: (AF)s csm-comp: F csm-id-adjoin: [u] csm-ap: (s)x csm-id: 1(X) compose: g pi1: fst(t) pi2: snd(t) interval-type: 𝕀 constant-cubical-type: (X) csm-ap-term: (t)s iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q path-type: (Path_A b) cubical-subset: cubical-subset cubical-term-at: u(a) cubical-fun-ext: cubical-fun-ext(X;e) interval-1: 1(𝕀) interval-0: 0(𝕀) cand: c∧ B csm+: tau+ same-cubical-term: X ⊢ u=v:A
Lemmas referenced :  cubical-term_wf cubical-pi_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf cube-context-adjoin_wf cubical_set_wf csm-ap-term_wf cc-fst_wf squash_wf true_wf equal_functionality_wrt_subtype_rel2 csm-ap-type_wf csm-adjoin_wf cc-snd_wf cubical-app_wf csm-comp_wf csm-cubical-pi interval-type_wf path-type_wf subset-cubical-term2 sub_cubical_set_self csm-adjoin-p-q cubical-pi-p csm_ap_term_fst_adjoin_lemma equal_wf subtype_rel_self iff_weakening_equal istype-universe csm-path-type csm-cubical-app cubical_type_at_pair_lemma csm-id-adjoin_wf-interval-1 csm_id_adjoin_fst_type_lemma csm-ap-id-type csm-id-adjoin_wf-interval-0 csm-id-adjoin_wf csm_id_adjoin_fst_term_lemma cc_snd_csm_id_adjoin_lemma cubical-path-app_wf csm-interval-type cubical-lambda_wf term-to-path-wf same-cubical-term_wf csm-cubical-lambda csm-cubical-path-app cubical-eta cubical-path-app-1 cubical-path-app-0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt because_Cache universeIsType cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis applyEquality sqequalRule equalityTransitivity equalitySymmetry lambdaEquality_alt imageElimination cumulativity independent_isectElimination independent_functionElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement setElimination rename productElimination dependent_functionElimination Error :memTop,  inhabitedIsType universeEquality applyLambdaEquality independent_pairFormation

Latex:
\mforall{}X:j\mvdash{}.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.  \mforall{}f,g:\{X  \mvdash{}  \_:\mPi{}A  B\}.
\mforall{}e:\{X  \mvdash{}  \_:\mPi{}A  (Path\_B  app((f)p;  q)  app((g)p;  q))\}.
    (cubical-fun-ext(X;e)  \mmember{}  \{X  \mvdash{}  \_:(Path\_\mPi{}A  B  f  g)\})



Date html generated: 2020_05_20-PM-03_35_49
Last ObjectModification: 2020_04_08-PM-07_30_05

Theory : cubical!type!theory


Home Index