Nuprl Lemma : cubical-fun-ext_wf
∀X:j⊢. ∀A:{X ⊢ _}. ∀B:{X.A ⊢ _}. ∀f,g:{X ⊢ _:ΠA B}. ∀e:{X ⊢ _:ΠA (Path_B app((f)p; q) app((g)p; q))}.
  (cubical-fun-ext(X;e) ∈ {X ⊢ _:(Path_ΠA B f g)})
Proof
Definitions occuring in Statement : 
cubical-fun-ext: cubical-fun-ext(X;e)
, 
path-type: (Path_A a b)
, 
cubical-app: app(w; u)
, 
cubical-pi: ΠA B
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
true: True
, 
cubical-type: {X ⊢ _}
, 
cc-snd: q
, 
cc-fst: p
, 
csm-adjoin: (s;u)
, 
csm-ap-type: (AF)s
, 
csm-comp: G o F
, 
csm-id-adjoin: [u]
, 
csm-ap: (s)x
, 
csm-id: 1(X)
, 
compose: f o g
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
interval-type: 𝕀
, 
constant-cubical-type: (X)
, 
csm-ap-term: (t)s
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
path-type: (Path_A a b)
, 
cubical-subset: cubical-subset, 
cubical-term-at: u(a)
, 
cubical-fun-ext: cubical-fun-ext(X;e)
, 
interval-1: 1(𝕀)
, 
interval-0: 0(𝕀)
, 
cand: A c∧ B
, 
csm+: tau+
, 
same-cubical-term: X ⊢ u=v:A
Lemmas referenced : 
cubical-term_wf, 
cubical-pi_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical-type_wf, 
cube-context-adjoin_wf, 
cubical_set_wf, 
csm-ap-term_wf, 
cc-fst_wf, 
squash_wf, 
true_wf, 
equal_functionality_wrt_subtype_rel2, 
csm-ap-type_wf, 
csm-adjoin_wf, 
cc-snd_wf, 
cubical-app_wf, 
csm-comp_wf, 
csm-cubical-pi, 
interval-type_wf, 
path-type_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-adjoin-p-q, 
cubical-pi-p, 
csm_ap_term_fst_adjoin_lemma, 
equal_wf, 
subtype_rel_self, 
iff_weakening_equal, 
istype-universe, 
csm-path-type, 
csm-cubical-app, 
cubical_type_at_pair_lemma, 
csm-id-adjoin_wf-interval-1, 
csm_id_adjoin_fst_type_lemma, 
csm-ap-id-type, 
csm-id-adjoin_wf-interval-0, 
csm-id-adjoin_wf, 
csm_id_adjoin_fst_term_lemma, 
cc_snd_csm_id_adjoin_lemma, 
cubical-path-app_wf, 
csm-interval-type, 
cubical-lambda_wf, 
term-to-path-wf, 
same-cubical-term_wf, 
csm-cubical-lambda, 
csm-cubical-path-app, 
cubical-eta, 
cubical-path-app-1, 
cubical-path-app-0
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
because_Cache, 
universeIsType, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
imageElimination, 
cumulativity, 
independent_isectElimination, 
independent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
setElimination, 
rename, 
productElimination, 
dependent_functionElimination, 
Error :memTop, 
inhabitedIsType, 
universeEquality, 
applyLambdaEquality, 
independent_pairFormation
Latex:
\mforall{}X:j\mvdash{}.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.  \mforall{}f,g:\{X  \mvdash{}  \_:\mPi{}A  B\}.
\mforall{}e:\{X  \mvdash{}  \_:\mPi{}A  (Path\_B  app((f)p;  q)  app((g)p;  q))\}.
    (cubical-fun-ext(X;e)  \mmember{}  \{X  \mvdash{}  \_:(Path\_\mPi{}A  B  f  g)\})
Date html generated:
2020_05_20-PM-03_35_49
Last ObjectModification:
2020_04_08-PM-07_30_05
Theory : cubical!type!theory
Home
Index