Nuprl Lemma : cubical-id-is-equiv_wf

X:j⊢. ∀T:{X ⊢ _}.  (cubical-id-is-equiv(X;T) ∈ {X ⊢ _:IsEquiv(T;T;cubical-id-fun(X))})


Proof




Definitions occuring in Statement :  cubical-id-is-equiv: cubical-id-is-equiv(X;T) is-cubical-equiv: IsEquiv(T;A;w) cubical-id-fun: cubical-id-fun(X) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] cubical-id-is-equiv: cubical-id-is-equiv(X;T) subtype_rel: A ⊆B true: True is-cubical-equiv: IsEquiv(T;A;w) uimplies: supposing a squash: T guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q prop:
Lemmas referenced :  cubical-id-fun_wf cubical-fiber-id-fun cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-ap-type_wf cc-fst_wf cc-snd_wf csm-cubical-id-fun cubical-type_wf cubical_set_wf cubical-lambda_wf contractible-type_wf contr-witness_wf id-fiber-center_wf subset-cubical-term2 sub_cubical_set_self id-fiber-contraction_wf subtype_rel-equal cubical-term_wf path-type_wf equal_wf cubical-fiber_wf csm-ap-term_wf cubical-fun_wf iff_weakening_equal squash_wf true_wf istype-universe subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate dependent_functionElimination applyEquality sqequalRule because_Cache universeIsType natural_numberEquality equalityTransitivity equalitySymmetry independent_isectElimination lambdaEquality_alt imageElimination imageMemberEquality baseClosed productElimination independent_functionElimination inhabitedIsType universeEquality

Latex:
\mforall{}X:j\mvdash{}.  \mforall{}T:\{X  \mvdash{}  \_\}.    (cubical-id-is-equiv(X;T)  \mmember{}  \{X  \mvdash{}  \_:IsEquiv(T;T;cubical-id-fun(X))\})



Date html generated: 2020_05_20-PM-03_32_44
Last ObjectModification: 2020_04_07-PM-06_01_27

Theory : cubical!type!theory


Home Index