Nuprl Lemma : cubical-universe-at-cumulativity

[I:fset(ℕ)]. ∀[a:Top].  (c𝕌(a) ⊆c𝕌'(a))


Proof




Definitions occuring in Statement :  cubical-universe: c𝕌 cubical-type-at: A(a) fset: fset(T) nat: subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B cubical-type: {X ⊢ _} so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] and: P ∧ Q
Lemmas referenced :  istype-top fset_wf nat_wf composition-op_wf formal-cube_wf1 cubical-type-cumulativity2 cubical-type_wf cubical-universe-at subtype_rel_dep_function I_cube_wf subtype_rel_universe1 names-hom_wf cube-set-restriction_wf nh-id_wf subtype_rel-equal cube-set-restriction-id nh-comp_wf cube-set-restriction-comp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule axiomEquality hypothesis extract_by_obid sqequalHypSubstitution isect_memberEquality_alt isectElimination thin hypothesisEquality isectIsTypeImplies inhabitedIsType universeIsType Error :memTop,  lambdaEquality_alt productElimination dependent_pairEquality_alt instantiate applyEquality productIsType setElimination rename dependent_set_memberEquality_alt functionExtensionality cumulativity universeEquality because_Cache independent_isectElimination lambdaFormation_alt functionIsType equalityIstype dependent_functionElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:Top].    (c\mBbbU{}(a)  \msubseteq{}r  c\mBbbU{}'(a))



Date html generated: 2020_05_20-PM-07_09_14
Last ObjectModification: 2020_04_25-PM-01_33_56

Theory : cubical!type!theory


Home Index