Nuprl Lemma : discrete-equiv-iff
∀A,B:Type.  ({() ⊢ _:Equiv(discr(A);discr(B))} ⇐⇒ A ~ B)
Proof
Definitions occuring in Statement : 
cubical-equiv: Equiv(T;A), 
discrete-cubical-type: discr(T), 
cubical-term: {X ⊢ _:A}, 
trivial-cube-set: (), 
equipollent: A ~ B, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
rev_implies: P ⇐ Q, 
equipollent: A ~ B, 
exists: ∃x:A. B[x], 
prop: ℙ, 
pi1: fst(t), 
pi2: snd(t), 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
squash: ↓T, 
true: True, 
guard: {T}
Lemmas referenced : 
cubical-term_wf, 
trivial-cube-set_wf, 
cubical-equiv_wf, 
discrete-cubical-type_wf, 
equipollent_wf, 
equiv-bijection_wf, 
equiv-bijection-is_wf, 
biject_wf, 
bijection-equiv_wf, 
bij_inv_wf, 
set_wf, 
all_wf, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
rename, 
dependent_pairEquality, 
because_Cache, 
functionExtensionality, 
applyEquality, 
productElimination, 
sqequalRule, 
independent_isectElimination, 
functionEquality, 
lambdaEquality, 
productEquality, 
setElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}A,B:Type.    (\{()  \mvdash{}  \_:Equiv(discr(A);discr(B))\}  \mLeftarrow{}{}\mRightarrow{}  A  \msim{}  B)
Date html generated:
2017_10_05-AM-02_17_59
Last ObjectModification:
2017_03_02-PM-11_26_12
Theory : cubical!type!theory
Home
Index