Nuprl Lemma : discrete-equiv-iff

A,B:Type.  ({() ⊢ _:Equiv(discr(A);discr(B))} ⇐⇒ B)


Proof




Definitions occuring in Statement :  cubical-equiv: Equiv(T;A) discrete-cubical-type: discr(T) cubical-term: {X ⊢ _:A} trivial-cube-set: () equipollent: B all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] rev_implies:  Q equipollent: B exists: x:A. B[x] prop: pi1: fst(t) pi2: snd(t) subtype_rel: A ⊆B uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] squash: T true: True guard: {T}
Lemmas referenced :  cubical-term_wf trivial-cube-set_wf cubical-equiv_wf discrete-cubical-type_wf equipollent_wf equiv-bijection_wf equiv-bijection-is_wf biject_wf bijection-equiv_wf bij_inv_wf set_wf all_wf equal_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis cumulativity hypothesisEquality universeEquality rename dependent_pairEquality because_Cache functionExtensionality applyEquality productElimination sqequalRule independent_isectElimination functionEquality lambdaEquality productEquality setElimination imageElimination equalityTransitivity equalitySymmetry dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}A,B:Type.    (\{()  \mvdash{}  \_:Equiv(discr(A);discr(B))\}  \mLeftarrow{}{}\mRightarrow{}  A  \msim{}  B)



Date html generated: 2017_10_05-AM-02_17_59
Last ObjectModification: 2017_03_02-PM-11_26_12

Theory : cubical!type!theory


Home Index