Nuprl Lemma : bijection-equiv_wf

[A,B:Type]. ∀[f:A ⟶ B]. ∀[g:B ⟶ A].
  (∀[X:j⊢]. (bijection-equiv(X;A;B;f;g) ∈ {X ⊢ _:Equiv(discr(A);discr(B))})) supposing 
     ((∀a:A. ((g (f a)) a ∈ A)) and 
     (∀b:B. ((f (g b)) b ∈ B)))


Proof




Definitions occuring in Statement :  bijection-equiv: bijection-equiv(X;A;B;f;g) cubical-equiv: Equiv(T;A) discrete-cubical-type: discr(T) cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cubical-term: {X ⊢ _:A} discrete-cubical-type: discr(T) cube-context-adjoin: X.A all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] pi2: snd(t) subtype_rel: A ⊆B guard: {T} cubical-lam: cubical-lam(X;b) cubical-app: app(w; u) cubical-lambda: b) cc-adjoin-cube: (v;u) cc-fst: p csm-ap-term: (t)s cc-snd: q csm-ap-type: (AF)s cubical-type-at: A(a) pi1: fst(t) bijection-equiv: bijection-equiv(X;A;B;f;g) is-cubical-equiv: IsEquiv(T;A;w) squash: T true: True prop: implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q fiber-point: fiber-point(t;c) cubical-pair: cubical-pair(u;v) cubical-fst: p.1 csm-ap: (s)x fiber-member: fiber-member(p) cubical-term-at: u(a)
Lemmas referenced :  I_cube_pair_redex_lemma cubical_type_at_pair_lemma pi2_wf I_cube_wf fset_wf nat_wf cube_set_restriction_pair_lemma cubical_type_ap_morph_pair_lemma names-hom_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j discrete-cubical-type_wf istype-cubical-type-at cube-set-restriction_wf cubical-type-ap-morph_wf cubical-lam_wf subset-cubical-term2 sub_cubical_set_self csm-ap-type_wf cc-fst_wf csm-discrete-cubical-type cubical-type-at_wf subtype_rel_self cubical-term-equal cc-snd_wf equiv-witness_wf cubical_set_wf istype-universe cubical-lambda_wf contractible-type_wf cubical-fiber_wf csm-ap-term_wf cubical-fun_wf cubical-term_wf csm-cubical-fun contr-witness_wf fiber-point_wf cubical-refl_wf squash_wf true_wf cubical-type_wf path-type_wf cubical-type-cumulativity2 csm-cubical-fiber equal_functionality_wrt_subtype_rel2 subtype_rel_universe1 equal-fiber-discrete member_wf iff_weakening_equal equal_wf csm-fiber-point fiber-path_wf discrete-path-endpoints cubical-app_wf_fun fiber-member_wf pi1_wf_top cubical-term-at_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis lambdaEquality_alt applyEquality hypothesisEquality instantiate isectElimination cumulativity universeIsType productIsType lambdaFormation_alt because_Cache inhabitedIsType functionIsType equalityIstype equalityTransitivity equalitySymmetry independent_isectElimination functionExtensionality axiomEquality isect_memberEquality_alt isectIsTypeImplies universeEquality imageElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement independent_functionElimination productElimination rename applyLambdaEquality productEquality independent_pairEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[g:B  {}\mrightarrow{}  A].
    (\mforall{}[X:j\mvdash{}].  (bijection-equiv(X;A;B;f;g)  \mmember{}  \{X  \mvdash{}  \_:Equiv(discr(A);discr(B))\}))  supposing 
          ((\mforall{}a:A.  ((g  (f  a))  =  a))  and 
          (\mforall{}b:B.  ((f  (g  b))  =  b)))



Date html generated: 2020_05_20-PM-03_42_53
Last ObjectModification: 2020_04_08-PM-10_06_29

Theory : cubical!type!theory


Home Index