Nuprl Lemma : bijection-equiv_wf
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[g:B ⟶ A].
  (∀[X:j⊢]. (bijection-equiv(X;A;B;f;g) ∈ {X ⊢ _:Equiv(discr(A);discr(B))})) supposing 
     ((∀a:A. ((g (f a)) = a ∈ A)) and 
     (∀b:B. ((f (g b)) = b ∈ B)))
Proof
Definitions occuring in Statement : 
bijection-equiv: bijection-equiv(X;A;B;f;g)
, 
cubical-equiv: Equiv(T;A)
, 
discrete-cubical-type: discr(T)
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
cubical-term: {X ⊢ _:A}
, 
discrete-cubical-type: discr(T)
, 
cube-context-adjoin: X.A
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
cubical-lam: cubical-lam(X;b)
, 
cubical-app: app(w; u)
, 
cubical-lambda: (λb)
, 
cc-adjoin-cube: (v;u)
, 
cc-fst: p
, 
csm-ap-term: (t)s
, 
cc-snd: q
, 
csm-ap-type: (AF)s
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
, 
bijection-equiv: bijection-equiv(X;A;B;f;g)
, 
is-cubical-equiv: IsEquiv(T;A;w)
, 
squash: ↓T
, 
true: True
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
fiber-point: fiber-point(t;c)
, 
cubical-pair: cubical-pair(u;v)
, 
cubical-fst: p.1
, 
csm-ap: (s)x
, 
fiber-member: fiber-member(p)
, 
cubical-term-at: u(a)
Lemmas referenced : 
I_cube_pair_redex_lemma, 
cubical_type_at_pair_lemma, 
pi2_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cube_set_restriction_pair_lemma, 
cubical_type_ap_morph_pair_lemma, 
names-hom_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
discrete-cubical-type_wf, 
istype-cubical-type-at, 
cube-set-restriction_wf, 
cubical-type-ap-morph_wf, 
cubical-lam_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-ap-type_wf, 
cc-fst_wf, 
csm-discrete-cubical-type, 
cubical-type-at_wf, 
subtype_rel_self, 
cubical-term-equal, 
cc-snd_wf, 
equiv-witness_wf, 
cubical_set_wf, 
istype-universe, 
cubical-lambda_wf, 
contractible-type_wf, 
cubical-fiber_wf, 
csm-ap-term_wf, 
cubical-fun_wf, 
cubical-term_wf, 
csm-cubical-fun, 
contr-witness_wf, 
fiber-point_wf, 
cubical-refl_wf, 
squash_wf, 
true_wf, 
cubical-type_wf, 
path-type_wf, 
cubical-type-cumulativity2, 
csm-cubical-fiber, 
equal_functionality_wrt_subtype_rel2, 
subtype_rel_universe1, 
equal-fiber-discrete, 
member_wf, 
iff_weakening_equal, 
equal_wf, 
csm-fiber-point, 
fiber-path_wf, 
discrete-path-endpoints, 
cubical-app_wf_fun, 
fiber-member_wf, 
pi1_wf_top, 
cubical-term-at_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
Error :memTop, 
hypothesis, 
lambdaEquality_alt, 
applyEquality, 
hypothesisEquality, 
instantiate, 
isectElimination, 
cumulativity, 
universeIsType, 
productIsType, 
lambdaFormation_alt, 
because_Cache, 
inhabitedIsType, 
functionIsType, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
functionExtensionality, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
independent_functionElimination, 
productElimination, 
rename, 
applyLambdaEquality, 
productEquality, 
independent_pairEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[g:B  {}\mrightarrow{}  A].
    (\mforall{}[X:j\mvdash{}].  (bijection-equiv(X;A;B;f;g)  \mmember{}  \{X  \mvdash{}  \_:Equiv(discr(A);discr(B))\}))  supposing 
          ((\mforall{}a:A.  ((g  (f  a))  =  a))  and 
          (\mforall{}b:B.  ((f  (g  b))  =  b)))
Date html generated:
2020_05_20-PM-03_42_53
Last ObjectModification:
2020_04_08-PM-10_06_29
Theory : cubical!type!theory
Home
Index