Nuprl Lemma : dma-neg-dM_opp
∀[I:fset(ℕ)]. ∀[x:names(I)].  (¬(<1-x>) = <x> ∈ Point(dM(I)))
Proof
Definitions occuring in Statement : 
dM_opp: <1-x>
, 
dM_inc: <x>
, 
dM: dM(I)
, 
names: names(I)
, 
dma-neg: ¬(x)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
dma-neg: ¬(x)
, 
record-select: r.x
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
btrue: tt
, 
dm-neg: ¬(x)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
dM_opp: <1-x>
, 
dmopp: <1-i>
, 
free-dl-inc: free-dl-inc(x)
, 
fset-singleton: {x}
, 
cons: [a / b]
, 
nil: []
, 
it: ⋅
, 
fset-union: x ⋃ y
, 
l-union: as ⋃ bs
, 
insert: insert(a;L)
, 
eval_list: eval_list(t)
, 
deq-member: x ∈b L
, 
bfalse: ff
, 
lattice-join: a ∨ b
, 
opposite-lattice: opposite-lattice(L)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
so_lambda: λ2x y.t[x; y]
, 
lattice-meet: a ∧ b
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
fset-ac-glb: fset-ac-glb(eq;ac1;ac2)
, 
fset-minimals: fset-minimals(x,y.less[x; y]; s)
, 
fset-filter: {x ∈ s | P[x]}
, 
filter: filter(P;l)
, 
lattice-fset-meet: /\(s)
, 
fset-ac-lub: fset-ac-lub(eq;ac1;ac2)
, 
lattice-1: 1
, 
lattice-0: 0
, 
empty-fset: {}
, 
fset-minimal: fset-minimal(x,y.less[x; y];s;a)
, 
fset-null: fset-null(s)
, 
null: null(as)
, 
f-proper-subset-dec: f-proper-subset-dec(eq;xs;ys)
, 
band: p ∧b q
, 
deq-f-subset: deq-f-subset(eq)
, 
isl: isl(x)
, 
decidable__f-subset, 
decidable__all_fset, 
decidable_functionality, 
iff_preserves_decidability, 
iff_weakening_uiff, 
fset-all-iff, 
decidable__assert, 
bnot: ¬bb
, 
decidable__fset-member, 
assert-deq-fset-member, 
deq-fset-member: a ∈b s
, 
bor: p ∨bq
, 
union-deq: union-deq(A;B;a;b)
, 
sumdeq: sumdeq(a;b)
, 
names-deq: NamesDeq
, 
int-deq: IntDeq
, 
eq_int: (i =z j)
, 
lattice-point: Point(l)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
true: True
Lemmas referenced : 
neg-dM_opp, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
dm-neg_wf, 
names_wf, 
names-deq_wf, 
dM_opp_wf, 
subtype_rel-equal, 
free-DeMorgan-lattice_wf, 
fset_wf, 
nat_wf, 
decidable__f-subset, 
decidable__all_fset, 
decidable_functionality, 
iff_preserves_decidability, 
iff_weakening_uiff, 
fset-all-iff, 
decidable__assert, 
decidable__fset-member, 
assert-deq-fset-member
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hyp_replacement, 
equalitySymmetry, 
sqequalRule, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
universeIsType, 
inhabitedIsType, 
instantiate, 
universeEquality, 
productEquality, 
independent_isectElimination, 
cumulativity, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:names(I)].    (\mneg{}(ə-x>)  =  <x>)
Date html generated:
2019_11_04-PM-05_30_33
Last ObjectModification:
2018_11_08-AM-10_18_17
Theory : cubical!type!theory
Home
Index