Nuprl Lemma : empty-context-subset-lemma2

[Gamma:j⊢]. ∀[A,x:Top].  (x ∈ {Gamma, 0(𝔽) ⊢ _:A})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-0: 0(𝔽) cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] top: Top member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] not: ¬A implies:  Q context-subset: Gamma, phi false: False face-0: 0(𝔽) cubical-term-at: u(a)
Lemmas referenced :  empty-context-lemma context-subset_wf face-0_wf istype-top cubical_set_wf I_cube_wf fset_wf nat_wf I_cube_pair_redex_lemma face-lattice-0-not-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination because_Cache universeIsType instantiate lambdaFormation_alt dependent_functionElimination Error :memTop,  setElimination rename sqequalRule independent_functionElimination voidElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A,x:Top].    (x  \mmember{}  \{Gamma,  0(\mBbbF{})  \mvdash{}  \_:A\})



Date html generated: 2020_05_20-PM-04_12_45
Last ObjectModification: 2020_04_10-AM-04_38_05

Theory : cubical!type!theory


Home Index