Nuprl Lemma : equiv-term-0

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}].
  ∀[A,T:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(T;A)}]. ∀[a:{G ⊢ _:A}]. ∀[t,c:Top]. ∀[cF:G +⊢ Compositon(Fiber(equiv-fun(f);a))].
    (equiv [phi ⊢→ (t,  c)] transprt(G;(cF)p;contr-center(equiv-contr(f;a))) ∈ {G ⊢ _:Fiber(equiv-fun(f);a)}) 
  supposing phi 0(𝔽) ∈ {G ⊢ _:𝔽}


Proof




Definitions occuring in Statement :  equiv-term: equiv [phi ⊢→ (t,  c)] a transprt: transprt(G;cA;a0) csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) equiv-contr: equiv-contr(f;a) equiv-fun: equiv-fun(f) cubical-equiv: Equiv(T;A) cubical-fiber: Fiber(w;a) contr-center: contr-center(c) face-0: 0(𝔽) face-type: 𝔽 interval-type: 𝕀 cc-fst: p cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] top: Top equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a equiv-term: equiv [phi ⊢→ (t,  c)] a let: let member: t ∈ T all: x:A. B[x] implies:  Q subtype_rel: A ⊆B prop: squash: T guard: {T} true: True and: P ∧ Q composition-structure: Gamma ⊢ Compositon(A) so_lambda: λ2x.t[x] so_apply: x[s] cubical-term: {X ⊢ _:A} constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
Lemmas referenced :  contr-center_wf cubical-fiber_wf equiv-fun_wf equiv-contr_wf equals-transprt csm-ap-type_wf cube-context-adjoin_wf interval-type_wf cc-fst_wf_interval csm-comp-structure_wf csm_id_adjoin_fst_type_lemma csm-ap-id-type cubical-term-eqcd equal_wf squash_wf true_wf istype-universe subset-cubical-term2 sub_cubical_set_self csm-id-adjoin_wf-interval-1 composition-structure_wf cubical_set_cumulativity-i-j istype-top istype-cubical-term cubical-equiv_wf cubical-type_wf face-0_wf face-type_wf cubical_set_wf comp_term_wf subtype_rel_set composition-function_wf uniform-comp-function_wf composition-function-cumulativity empty-context-subset-lemma4 cubical-term_wf context-subset_wf subset-cubical-type context-subset-is-subset cubical-type-cumulativity2 empty-context-subset-lemma3 csm-id-adjoin_wf interval-0_wf csm-context-subset-subtype2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType lambdaFormation_alt Error :memTop,  because_Cache instantiate applyEquality dependent_functionElimination equalitySymmetry equalityTransitivity independent_isectElimination lambdaEquality_alt cumulativity universeIsType universeEquality hyp_replacement imageElimination natural_numberEquality imageMemberEquality baseClosed equalityIstype independent_functionElimination dependent_set_memberEquality_alt independent_pairFormation productIsType applyLambdaEquality setElimination rename productElimination

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].
    \mforall{}[A,T:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(T;A)\}].  \mforall{}[a:\{G  \mvdash{}  \_:A\}].  \mforall{}[t,c:Top].
    \mforall{}[cF:G  +\mvdash{}  Compositon(Fiber(equiv-fun(f);a))].
        (equiv  f  [phi  \mvdash{}\mrightarrow{}  (t,    c)]  a  =  transprt(G;(cF)p;contr-center(equiv-contr(f;a)))) 
    supposing  phi  =  0(\mBbbF{})



Date html generated: 2020_05_20-PM-05_35_48
Last ObjectModification: 2020_04_21-AM-09_41_55

Theory : cubical!type!theory


Home Index