Nuprl Lemma : equiv-term-0
∀[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}].
  ∀[A,T:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(T;A)}]. ∀[a:{G ⊢ _:A}]. ∀[t,c:Top]. ∀[cF:G +⊢ Compositon(Fiber(equiv-fun(f);a))].
    (equiv f [phi ⊢→ (t,  c)] a = transprt(G;(cF)p;contr-center(equiv-contr(f;a))) ∈ {G ⊢ _:Fiber(equiv-fun(f);a)}) 
  supposing phi = 0(𝔽) ∈ {G ⊢ _:𝔽}
Proof
Definitions occuring in Statement : 
equiv-term: equiv f [phi ⊢→ (t,  c)] a
, 
transprt: transprt(G;cA;a0)
, 
csm-comp-structure: (cA)tau
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
equiv-contr: equiv-contr(f;a)
, 
equiv-fun: equiv-fun(f)
, 
cubical-equiv: Equiv(T;A)
, 
cubical-fiber: Fiber(w;a)
, 
contr-center: contr-center(c)
, 
face-0: 0(𝔽)
, 
face-type: 𝔽
, 
interval-type: 𝕀
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
equiv-term: equiv f [phi ⊢→ (t,  c)] a
, 
let: let, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
squash: ↓T
, 
guard: {T}
, 
true: True
, 
and: P ∧ Q
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cubical-term: {X ⊢ _:A}
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
Lemmas referenced : 
contr-center_wf, 
cubical-fiber_wf, 
equiv-fun_wf, 
equiv-contr_wf, 
equals-transprt, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cc-fst_wf_interval, 
csm-comp-structure_wf, 
csm_id_adjoin_fst_type_lemma, 
csm-ap-id-type, 
cubical-term-eqcd, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-id-adjoin_wf-interval-1, 
composition-structure_wf, 
cubical_set_cumulativity-i-j, 
istype-top, 
istype-cubical-term, 
cubical-equiv_wf, 
cubical-type_wf, 
face-0_wf, 
face-type_wf, 
cubical_set_wf, 
comp_term_wf, 
subtype_rel_set, 
composition-function_wf, 
uniform-comp-function_wf, 
composition-function-cumulativity, 
empty-context-subset-lemma4, 
cubical-term_wf, 
context-subset_wf, 
subset-cubical-type, 
context-subset-is-subset, 
cubical-type-cumulativity2, 
empty-context-subset-lemma3, 
csm-id-adjoin_wf, 
interval-0_wf, 
csm-context-subset-subtype2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
Error :memTop, 
because_Cache, 
instantiate, 
applyEquality, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination, 
lambdaEquality_alt, 
cumulativity, 
universeIsType, 
universeEquality, 
hyp_replacement, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityIstype, 
independent_functionElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].
    \mforall{}[A,T:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(T;A)\}].  \mforall{}[a:\{G  \mvdash{}  \_:A\}].  \mforall{}[t,c:Top].
    \mforall{}[cF:G  +\mvdash{}  Compositon(Fiber(equiv-fun(f);a))].
        (equiv  f  [phi  \mvdash{}\mrightarrow{}  (t,    c)]  a  =  transprt(G;(cF)p;contr-center(equiv-contr(f;a)))) 
    supposing  phi  =  0(\mBbbF{})
Date html generated:
2020_05_20-PM-05_35_48
Last ObjectModification:
2020_04_21-AM-09_41_55
Theory : cubical!type!theory
Home
Index