Nuprl Lemma : equivU_wf
∀[G:j⊢]. ∀[E:{G.𝕀 ⊢ _}]. ∀[cE:G.𝕀 ⊢ CompOp(E)].  (equivU(G;E;cE) ∈ {G ⊢ _:Equiv((E)[0(𝕀)];(E)[1(𝕀)])})
Proof
Definitions occuring in Statement : 
equivU: equivU(G;E;cE), 
composition-op: Gamma ⊢ CompOp(A), 
cubical-equiv: Equiv(T;A), 
interval-1: 1(𝕀), 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
csm-id-adjoin: [u], 
cube-context-adjoin: X.A, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
cubical-type: {X ⊢ _}, 
interval-0: 0(𝕀), 
csm-id-adjoin: [u], 
csm-ap-type: (AF)s, 
cc-fst: p, 
interval-1: 1(𝕀), 
csm-id: 1(X), 
csm-adjoin: (s;u), 
csm-ap: (s)x, 
pi1: fst(t), 
equivU: equivU(G;E;cE), 
all: ∀x:A. B[x], 
squash: ↓T, 
prop: ℙ, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-id-adjoin_wf, 
interval-0_wf, 
cc-fst_wf_interval, 
transport_wf, 
cubical-equiv_wf, 
csm-cubical-equiv, 
subset-cubical-term2, 
sub_cubical_set_self, 
istype-cubical-term, 
composition-op_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
equiv-comp_wf, 
csm-composition_wf, 
cubical-id-equiv_wf, 
interval-1_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical-type_wf, 
subtype_rel_self, 
iff_weakening_equal, 
csm-ap-type-fst-id-adjoin, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
hypothesis, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
independent_isectElimination, 
sqequalRule, 
universeIsType, 
setElimination, 
rename, 
productElimination, 
dependent_functionElimination, 
lambdaEquality_alt, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
inhabitedIsType, 
Error :memTop
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[E:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cE:G.\mBbbI{}  \mvdash{}  CompOp(E)].
    (equivU(G;E;cE)  \mmember{}  \{G  \mvdash{}  \_:Equiv((E)[0(\mBbbI{})];(E)[1(\mBbbI{})])\})
Date html generated:
2020_05_20-PM-07_21_07
Last ObjectModification:
2020_04_25-PM-09_52_26
Theory : cubical!type!theory
Home
Index