Nuprl Lemma : face-lattice-tube_wf
∀[I:fset(ℕ)]. ∀[phi:Point(face_lattice(I))]. ∀[j:ℕ].  (face-lattice-tube(I;phi;j) ∈ Point(face_lattice(I+j)))
Proof
Definitions occuring in Statement : 
face-lattice-tube: face-lattice-tube(I;phi;j), 
face_lattice: face_lattice(I), 
add-name: I+i, 
lattice-point: Point(l), 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
face-lattice-tube: face-lattice-tube(I;phi;j), 
subtype_rel: A ⊆r B, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
so_apply: x[s], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
I_cube: A(I), 
functor-ob: functor-ob(F), 
pi1: fst(t), 
face-presheaf: 𝔽, 
names: names(I), 
nat: ℕ
Lemmas referenced : 
fl1_wf, 
strong-subtype-self, 
le_wf, 
strong-subtype-set3, 
strong-subtype-deq-subtype, 
int-deq_wf, 
nat_wf, 
fset-member_wf, 
trivial-member-add-name1, 
fl0_wf, 
face-lattice-constraints_wf, 
fset-contains-none_wf, 
fset-all_wf, 
names-deq_wf, 
union-deq_wf, 
fset-antichain_wf, 
assert_wf, 
names_wf, 
fset_wf, 
subtype_rel_self, 
f-subset-add-name, 
nc-s_wf, 
face-presheaf_wf, 
cube-set-restriction_wf, 
lattice-meet_wf, 
equal_wf, 
lattice-point_wf, 
uall_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
add-name_wf, 
face_lattice_wf, 
lattice-join_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
universeEquality, 
independent_isectElimination, 
dependent_functionElimination, 
setEquality, 
unionEquality, 
dependent_set_memberEquality, 
intEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:Point(face\_lattice(I))].  \mforall{}[j:\mBbbN{}].
    (face-lattice-tube(I;phi;j)  \mmember{}  Point(face\_lattice(I+j)))
Date html generated:
2016_05_18-PM-00_19_42
Last ObjectModification:
2016_02_18-PM-05_11_23
Theory : cubical!type!theory
Home
Index