Nuprl Lemma : face_lattice-point-subtype

[I,J:fset(ℕ)].  Point(face_lattice(I)) ⊆Point(face_lattice(J)) supposing I ⊆ J


Proof




Definitions occuring in Statement :  face_lattice: face_lattice(I) lattice-point: Point(l) f-subset: xs ⊆ ys fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B prop: nat: so_lambda: λ2x.t[x] so_apply: x[s] face_lattice: face_lattice(I) bdd-distributive-lattice: BoundedDistributiveLattice and: P ∧ Q top: Top cand: c∧ B union-deq: union-deq(A;B;a;b) sumdeq: sumdeq(a;b)
Lemmas referenced :  face-lattice-constraints_wf fset-contains-none_wf fset-all_wf union-deq_wf fset-antichain_wf assert_wf names-subtype subtype_rel_union fset-subtype fl-point-sq lattice-join_wf lattice-meet_wf equal_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set names-deq_wf names_wf face-lattice_wf lattice-point_wf fset_wf strong-subtype-self le_wf strong-subtype-set3 strong-subtype-deq-subtype int-deq_wf nat_wf f-subset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule axiomEquality hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality intEquality independent_isectElimination because_Cache lambdaEquality natural_numberEquality hypothesisEquality isect_memberEquality equalityTransitivity equalitySymmetry instantiate productEquality cumulativity universeEquality voidElimination voidEquality setElimination rename dependent_set_memberEquality productElimination unionEquality independent_pairFormation

Latex:
\mforall{}[I,J:fset(\mBbbN{})].    Point(face\_lattice(I))  \msubseteq{}r  Point(face\_lattice(J))  supposing  I  \msubseteq{}  J



Date html generated: 2016_05_18-PM-00_09_24
Last ObjectModification: 2016_03_25-AM-10_33_40

Theory : cubical!type!theory


Home Index