Nuprl Lemma : face_lattice-point-subtype
∀[I,J:fset(ℕ)].  Point(face_lattice(I)) ⊆r Point(face_lattice(J)) supposing I ⊆ J
Proof
Definitions occuring in Statement : 
face_lattice: face_lattice(I)
, 
lattice-point: Point(l)
, 
f-subset: xs ⊆ ys
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
face_lattice: face_lattice(I)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
and: P ∧ Q
, 
top: Top
, 
cand: A c∧ B
, 
union-deq: union-deq(A;B;a;b)
, 
sumdeq: sumdeq(a;b)
Lemmas referenced : 
face-lattice-constraints_wf, 
fset-contains-none_wf, 
fset-all_wf, 
union-deq_wf, 
fset-antichain_wf, 
assert_wf, 
names-subtype, 
subtype_rel_union, 
fset-subtype, 
fl-point-sq, 
lattice-join_wf, 
lattice-meet_wf, 
equal_wf, 
uall_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
names-deq_wf, 
names_wf, 
face-lattice_wf, 
lattice-point_wf, 
fset_wf, 
strong-subtype-self, 
le_wf, 
strong-subtype-set3, 
strong-subtype-deq-subtype, 
int-deq_wf, 
nat_wf, 
f-subset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
axiomEquality, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
intEquality, 
independent_isectElimination, 
because_Cache, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
productEquality, 
cumulativity, 
universeEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
unionEquality, 
independent_pairFormation
Latex:
\mforall{}[I,J:fset(\mBbbN{})].    Point(face\_lattice(I))  \msubseteq{}r  Point(face\_lattice(J))  supposing  I  \msubseteq{}  J
Date html generated:
2016_05_18-PM-00_09_24
Last ObjectModification:
2016_03_25-AM-10_33_40
Theory : cubical!type!theory
Home
Index