Nuprl Lemma : fill-type-down_wf
∀[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)].
  (fill-type-down(Gamma;A;cA) ∈ {Gamma.𝕀 ⊢ _:(((A)[1(𝕀)])p ⟶ A)})
Proof
Definitions occuring in Statement : 
fill-type-down: fill-type-down(Gamma;A;cA), 
composition-op: Gamma ⊢ CompOp(A), 
interval-1: 1(𝕀), 
interval-type: 𝕀, 
cubical-fun: (A ⟶ B), 
csm-id-adjoin: [u], 
cc-fst: p, 
cube-context-adjoin: X.A, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cc-snd: q, 
interval-type: 𝕀, 
cc-fst: p, 
csm-ap-type: (AF)s, 
constant-cubical-type: (X), 
subtype_rel: A ⊆r B, 
rev-type-line: (A)-, 
fill-type-down: fill-type-down(Gamma;A;cA), 
squash: ↓T, 
prop: ℙ, 
true: True, 
all: ∀x:A. B[x], 
interval-rev: 1-(r), 
cubical-type: {X ⊢ _}, 
interval-1: 1(𝕀), 
csm-id-adjoin: [u], 
interval-0: 0(𝕀), 
cubical-term-at: u(a), 
csm-adjoin: (s;u), 
csm-ap: (s)x, 
csm-id: 1(X), 
pi1: fst(t), 
pi2: snd(t), 
implies: P ⇒ Q
Lemmas referenced : 
csm-adjoin_wf, 
interval-type_wf, 
cc-fst_wf, 
csm-interval-type, 
interval-rev_wf, 
cube-context-adjoin_wf, 
cc-snd_wf, 
csm-composition_wf, 
cubical_set_cumulativity-i-j, 
subtype_rel_self, 
composition-op_wf, 
rev-type-line_wf, 
cubical-type-cumulativity2, 
fill-type-up_wf, 
cubical-fun_wf, 
csm-ap-type_wf, 
csm-id-adjoin_wf-interval-0, 
cubical-type_wf, 
cubical_set_wf, 
cubical-term_wf, 
squash_wf, 
true_wf, 
csm-ap-term_wf, 
csm-cubical-fun, 
dma-neg-dM0, 
csm-id-adjoin_wf-interval-1, 
rev-rev-type-line
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
instantiate, 
sqequalRule, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
universeIsType, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
dependent_functionElimination, 
setElimination, 
rename, 
productElimination, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityIstype, 
independent_functionElimination
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].
    (fill-type-down(Gamma;A;cA)  \mmember{}  \{Gamma.\mBbbI{}  \mvdash{}  \_:(((A)[1(\mBbbI{})])p  {}\mrightarrow{}  A)\})
Date html generated:
2020_05_20-PM-04_55_22
Last ObjectModification:
2020_04_13-PM-02_48_50
Theory : cubical!type!theory
Home
Index