Nuprl Lemma : fill-type-up_wf

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)].
  (fill-type-up(Gamma;A;cA) ∈ {Gamma.𝕀 ⊢ _:(((A)[0(𝕀)])p ⟶ A)})


Proof




Definitions occuring in Statement :  fill-type-up: fill-type-up(Gamma;A;cA) composition-op: Gamma ⊢ CompOp(A) interval-0: 0(𝕀) interval-type: 𝕀 cubical-fun: (A ⟶ B) csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B fill-type-up: fill-type-up(Gamma;A;cA) and: P ∧ Q cand: c∧ B cubical-type: {X ⊢ _} cc-snd: q interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap-type: (AF)s cc-fst: p interval-type: 𝕀 csm+: tau+ csm-ap: (s)x csm-id: 1(X) csm-adjoin: (s;u) constant-cubical-type: (X) csm-comp: F pi2: snd(t) compose: g pi1: fst(t) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} squash: T prop: true: True
Lemmas referenced :  csm-ap-type_wf cube-context-adjoin_wf interval-type_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-0 cc-fst_wf composition-op_wf cubical-type-cumulativity2 cubical-type_wf cubical_set_wf cubical-lambda_wf filling_term_wf face-0_wf csm+_wf_interval csm-composition_wf csm-face-0 context-subset-term-0 constrained-cubical-term-0 csm+_wf csm-id-adjoin_wf csm-interval-type interval-0_wf cc-snd_wf csm-ap-term_wf swap-interval_wf cubical-term_wf squash_wf true_wf p+-swap-interval cubical-type-cumulativity cubical-fun-as-cubical-pi
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate hypothesis applyEquality because_Cache sqequalRule universeIsType equalityTransitivity equalitySymmetry productElimination independent_pairFormation Error :memTop,  setElimination rename applyLambdaEquality imageMemberEquality baseClosed imageElimination lambdaEquality_alt hyp_replacement natural_numberEquality inhabitedIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].
    (fill-type-up(Gamma;A;cA)  \mmember{}  \{Gamma.\mBbbI{}  \mvdash{}  \_:(((A)[0(\mBbbI{})])p  {}\mrightarrow{}  A)\})



Date html generated: 2020_05_20-PM-04_54_32
Last ObjectModification: 2020_04_13-PM-02_49_09

Theory : cubical!type!theory


Home Index