Nuprl Lemma : fill-type-up_wf
∀[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)].
  (fill-type-up(Gamma;A;cA) ∈ {Gamma.𝕀 ⊢ _:(((A)[0(𝕀)])p ⟶ A)})
Proof
Definitions occuring in Statement : 
fill-type-up: fill-type-up(Gamma;A;cA), 
composition-op: Gamma ⊢ CompOp(A), 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
cubical-fun: (A ⟶ B), 
csm-id-adjoin: [u], 
cc-fst: p, 
cube-context-adjoin: X.A, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
fill-type-up: fill-type-up(Gamma;A;cA), 
and: P ∧ Q, 
cand: A c∧ B, 
cubical-type: {X ⊢ _}, 
cc-snd: q, 
interval-0: 0(𝕀), 
csm-id-adjoin: [u], 
csm-ap-type: (AF)s, 
cc-fst: p, 
interval-type: 𝕀, 
csm+: tau+, 
csm-ap: (s)x, 
csm-id: 1(X), 
csm-adjoin: (s;u), 
constant-cubical-type: (X), 
csm-comp: G o F, 
pi2: snd(t), 
compose: f o g, 
pi1: fst(t), 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
squash: ↓T, 
prop: ℙ, 
true: True
Lemmas referenced : 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cubical_set_cumulativity-i-j, 
csm-id-adjoin_wf-interval-0, 
cc-fst_wf, 
composition-op_wf, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cubical_set_wf, 
cubical-lambda_wf, 
filling_term_wf, 
face-0_wf, 
csm+_wf_interval, 
csm-composition_wf, 
csm-face-0, 
context-subset-term-0, 
constrained-cubical-term-0, 
csm+_wf, 
csm-id-adjoin_wf, 
csm-interval-type, 
interval-0_wf, 
cc-snd_wf, 
csm-ap-term_wf, 
swap-interval_wf, 
cubical-term_wf, 
squash_wf, 
true_wf, 
p+-swap-interval, 
cubical-type-cumulativity, 
cubical-fun-as-cubical-pi
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
hypothesis, 
applyEquality, 
because_Cache, 
sqequalRule, 
universeIsType, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_pairFormation, 
Error :memTop, 
setElimination, 
rename, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
lambdaEquality_alt, 
hyp_replacement, 
natural_numberEquality, 
inhabitedIsType
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].
    (fill-type-up(Gamma;A;cA)  \mmember{}  \{Gamma.\mBbbI{}  \mvdash{}  \_:(((A)[0(\mBbbI{})])p  {}\mrightarrow{}  A)\})
Date html generated:
2020_05_20-PM-04_54_32
Last ObjectModification:
2020_04_13-PM-02_49_09
Theory : cubical!type!theory
Home
Index