Nuprl Lemma : constrained-cubical-term-0

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[t:Top]. ∀[x:{Gamma ⊢ _:A}].  (x ∈ {Gamma ⊢ _:A[0(𝔽|⟶ t]})


Proof




Definitions occuring in Statement :  constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} face-0: 0(𝔽) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] top: Top member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} subtype_rel: A ⊆B uimplies: supposing a context-subset: Gamma, phi all: x:A. B[x] face-0: 0(𝔽) cubical-term-at: u(a) not: ¬A implies:  Q false: False respects-equality: respects-equality(S;T) guard: {T}
Lemmas referenced :  cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j istype-top cubical-type_wf cubical_set_wf I_cube_wf context-subset_wf face-0_wf fset_wf nat_wf cubical-term-equal thin-context-subset context-subset-term-subtype I_cube_pair_redex_lemma face-lattice-0-not-1 context-subset-term-0 respects-equality-context-subset-term
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt dependent_set_memberEquality_alt hypothesisEquality universeIsType cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination applyEquality hypothesis sqequalRule equalitySymmetry functionExtensionality because_Cache equalityTransitivity independent_isectElimination dependent_functionElimination Error :memTop,  setElimination rename independent_functionElimination voidElimination equalityIstype

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[t:Top].  \mforall{}[x:\{Gamma  \mvdash{}  \_:A\}].    (x  \mmember{}  \{Gamma  \mvdash{}  \_:A[0(\mBbbF{})  |{}\mrightarrow{}  t]\})



Date html generated: 2020_05_20-PM-02_58_28
Last ObjectModification: 2020_04_04-PM-05_13_12

Theory : cubical!type!theory


Home Index