Nuprl Lemma : fl-morph-fl1-is-1
∀[J,I:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[x:names(I)].  uiff(((x=1))<f> = 1 ∈ Point(face_lattice(J));(f x) = 1 ∈ Point(dM(J)))
Proof
Definitions occuring in Statement : 
fl-morph: <f>, 
fl1: (x=1), 
face_lattice: face_lattice(I), 
names-hom: I ⟶ J, 
dM1: 1, 
dM: dM(I), 
names: names(I), 
lattice-1: 1, 
lattice-point: Point(l), 
fset: fset(T), 
nat: ℕ, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
apply: f a, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
squash: ↓T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
rev_implies: P ⇐ Q, 
names-hom: I ⟶ J, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
DeMorgan-algebra: DeMorganAlgebra, 
dM1: 1
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
lattice-point_wf, 
face_lattice_wf, 
fl-morph-fl1, 
lattice-1_wf, 
iff_weakening_equal, 
fl-morph_wf, 
bounded-lattice-hom_wf, 
fl1_wf, 
dM_wf, 
dM1_wf, 
uiff_wf, 
dM-to-FL_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
bdd-distributive-lattice_wf, 
DeMorgan-algebra-structure_wf, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
DeMorgan-algebra-axioms_wf, 
names_wf, 
names-hom_wf, 
fset_wf, 
nat_wf, 
iff_weakening_uiff, 
dM-to-FL-eq-1
Rules used in proof : 
cut, 
addLevel, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
productElimination, 
thin, 
independent_pairFormation, 
isect_memberFormation, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
sqequalRule, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
cumulativity, 
setElimination, 
rename, 
instantiate, 
productEquality, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[J,I:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[x:names(I)].    uiff(((x=1))<f>  =  1;(f  x)  =  1)
Date html generated:
2017_10_05-AM-01_13_55
Last ObjectModification:
2017_07_28-AM-09_31_15
Theory : cubical!type!theory
Home
Index