Nuprl Lemma : formal-cube-singleton2
∀x:ℕ. (λA,u,x. u ∈ nat-trans(op-cat(CubeCat);TypeCat';𝕀;formal-cube({x})))
Proof
Definitions occuring in Statement :
formal-cube: formal-cube(I)
,
interval-presheaf: 𝕀
,
cube-cat: CubeCat
,
type-cat: TypeCat
,
op-cat: op-cat(C)
,
nat-trans: nat-trans(C;D;F;G)
,
fset-singleton: {x}
,
nat: ℕ
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
lambda: λx.A[x]
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
ps_context: __⊢
,
cubical_set: CubicalSet
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
cat-functor: Functor(C1;C2)
,
formal-cube: formal-cube(I)
,
interval-presheaf: 𝕀
,
type-cat: TypeCat
,
top: Top
,
names-hom: I ⟶ J
,
uimplies: b supposing a
,
cube-cat: CubeCat
,
op-cat: op-cat(C)
,
spreadn: spread4,
compose: f o g
,
DeMorgan-algebra: DeMorganAlgebra
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
and: P ∧ Q
,
guard: {T}
,
so_apply: x[s]
,
names: names(I)
,
dM-lift: dM-lift(I;J;f)
,
nh-comp: g ⋅ f
,
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g)
,
dM: dM(I)
Lemmas referenced :
interval-presheaf_wf,
small_cubical_set_subtype,
is-nat-trans,
op-cat_wf,
cube-cat_wf,
type-cat_wf,
formal-cube_wf,
fset-singleton_wf,
nat_wf,
subtype_rel_self,
cat-functor_wf,
cat_arrow_triple_lemma,
istype-void,
ob_pair_lemma,
names_wf,
lattice-point_wf,
dM_wf,
cat-ob_wf,
cat_comp_tuple_lemma,
arrow_pair_lemma,
cat_ob_pair_lemma,
subtype_rel_set,
DeMorgan-algebra-structure_wf,
lattice-structure_wf,
lattice-axioms_wf,
bounded-lattice-structure-subtype,
DeMorgan-algebra-structure-subtype,
subtype_rel_transitivity,
bounded-lattice-structure_wf,
bounded-lattice-axioms_wf,
uall_wf,
equal_wf,
lattice-meet_wf,
lattice-join_wf,
DeMorgan-algebra-axioms_wf,
fset_wf,
istype-nat,
dM-lift_wf2
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
cut,
introduction,
extract_by_obid,
hypothesis,
applyEquality,
thin,
sqequalHypSubstitution,
sqequalRule,
instantiate,
isectElimination,
equalityTransitivity,
equalitySymmetry,
hypothesisEquality,
lambdaEquality_alt,
dependent_functionElimination,
isect_memberEquality_alt,
voidElimination,
universeIsType,
because_Cache,
independent_isectElimination,
functionExtensionality,
rename,
functionIsType,
productEquality,
cumulativity,
inhabitedIsType,
setElimination
Latex:
\mforall{}x:\mBbbN{}. (\mlambda{}A,u,x. u \mmember{} nat-trans(op-cat(CubeCat);TypeCat';\mBbbI{};formal-cube(\{x\})))
Date html generated:
2019_11_04-PM-05_32_22
Last ObjectModification:
2018_12_13-AM-10_03_55
Theory : cubical!type!theory
Home
Index