Nuprl Lemma : formal-cube-singleton2
∀x:ℕ. (λA,u,x. u ∈ nat-trans(op-cat(CubeCat);TypeCat';𝕀;formal-cube({x})))
Proof
Definitions occuring in Statement : 
formal-cube: formal-cube(I)
, 
interval-presheaf: 𝕀
, 
cube-cat: CubeCat
, 
type-cat: TypeCat
, 
op-cat: op-cat(C)
, 
nat-trans: nat-trans(C;D;F;G)
, 
fset-singleton: {x}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
ps_context: __⊢
, 
cubical_set: CubicalSet
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
cat-functor: Functor(C1;C2)
, 
formal-cube: formal-cube(I)
, 
interval-presheaf: 𝕀
, 
type-cat: TypeCat
, 
top: Top
, 
names-hom: I ⟶ J
, 
uimplies: b supposing a
, 
cube-cat: CubeCat
, 
op-cat: op-cat(C)
, 
spreadn: spread4, 
compose: f o g
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
guard: {T}
, 
so_apply: x[s]
, 
names: names(I)
, 
dM-lift: dM-lift(I;J;f)
, 
nh-comp: g ⋅ f
, 
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g)
, 
dM: dM(I)
Lemmas referenced : 
interval-presheaf_wf, 
small_cubical_set_subtype, 
is-nat-trans, 
op-cat_wf, 
cube-cat_wf, 
type-cat_wf, 
formal-cube_wf, 
fset-singleton_wf, 
nat_wf, 
subtype_rel_self, 
cat-functor_wf, 
cat_arrow_triple_lemma, 
istype-void, 
ob_pair_lemma, 
names_wf, 
lattice-point_wf, 
dM_wf, 
cat-ob_wf, 
cat_comp_tuple_lemma, 
arrow_pair_lemma, 
cat_ob_pair_lemma, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
fset_wf, 
istype-nat, 
dM-lift_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
applyEquality, 
thin, 
sqequalHypSubstitution, 
sqequalRule, 
instantiate, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
hypothesisEquality, 
lambdaEquality_alt, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
because_Cache, 
independent_isectElimination, 
functionExtensionality, 
rename, 
functionIsType, 
productEquality, 
cumulativity, 
inhabitedIsType, 
setElimination
Latex:
\mforall{}x:\mBbbN{}.  (\mlambda{}A,u,x.  u  \mmember{}  nat-trans(op-cat(CubeCat);TypeCat';\mBbbI{};formal-cube(\{x\})))
Date html generated:
2019_11_04-PM-05_32_22
Last ObjectModification:
2018_12_13-AM-10_03_55
Theory : cubical!type!theory
Home
Index