Nuprl Lemma : formal-cube-singleton2

x:ℕA,u,x. u ∈ nat-trans(op-cat(CubeCat);TypeCat';𝕀;formal-cube({x})))


Proof




Definitions occuring in Statement :  formal-cube: formal-cube(I) interval-presheaf: 𝕀 cube-cat: CubeCat type-cat: TypeCat op-cat: op-cat(C) nat-trans: nat-trans(C;D;F;G) fset-singleton: {x} nat: all: x:A. B[x] member: t ∈ T lambda: λx.A[x]
Definitions unfolded in proof :  all: x:A. B[x] ps_context: __⊢ cubical_set: CubicalSet member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] cat-functor: Functor(C1;C2) formal-cube: formal-cube(I) interval-presheaf: 𝕀 type-cat: TypeCat top: Top names-hom: I ⟶ J uimplies: supposing a cube-cat: CubeCat op-cat: op-cat(C) spreadn: spread4 compose: g DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: and: P ∧ Q guard: {T} so_apply: x[s] names: names(I) dM-lift: dM-lift(I;J;f) nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) dM: dM(I)
Lemmas referenced :  interval-presheaf_wf small_cubical_set_subtype is-nat-trans op-cat_wf cube-cat_wf type-cat_wf formal-cube_wf fset-singleton_wf nat_wf subtype_rel_self cat-functor_wf cat_arrow_triple_lemma istype-void ob_pair_lemma names_wf lattice-point_wf dM_wf cat-ob_wf cat_comp_tuple_lemma arrow_pair_lemma cat_ob_pair_lemma subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf fset_wf istype-nat dM-lift_wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid hypothesis applyEquality thin sqequalHypSubstitution sqequalRule instantiate isectElimination equalityTransitivity equalitySymmetry hypothesisEquality lambdaEquality_alt dependent_functionElimination isect_memberEquality_alt voidElimination universeIsType because_Cache independent_isectElimination functionExtensionality rename functionIsType productEquality cumulativity inhabitedIsType setElimination

Latex:
\mforall{}x:\mBbbN{}.  (\mlambda{}A,u,x.  u  \mmember{}  nat-trans(op-cat(CubeCat);TypeCat';\mBbbI{};formal-cube(\{x\})))



Date html generated: 2019_11_04-PM-05_32_22
Last ObjectModification: 2018_12_13-AM-10_03_55

Theory : cubical!type!theory


Home Index