Nuprl Lemma : map-to-context-subset-disjoint
∀[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}]. ∀[H:j⊢].
  ∀[sigma:H j⟶ Gamma, (phi ∧ psi)]. ∀[I:fset(ℕ)].  (¬H(I)) supposing Gamma ⊢ ((phi ∧ psi) ⇒ 0(𝔽))
Proof
Definitions occuring in Statement : 
face-term-implies: Gamma ⊢ (phi ⇒ psi), 
context-subset: Gamma, phi, 
face-and: (a ∧ b), 
face-0: 0(𝔽), 
face-type: 𝔽, 
cubical-term: {X ⊢ _:A}, 
cube_set_map: A ⟶ B, 
I_cube: A(I), 
cubical_set: CubicalSet, 
fset: fset(T), 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
cube_set_map: A ⟶ B, 
psc_map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
context-subset: Gamma, phi, 
type-cat: TypeCat, 
cube-cat: CubeCat, 
op-cat: op-cat(C), 
spreadn: spread4, 
all: ∀x:A. B[x], 
I_cube: A(I), 
prop: ℙ, 
face-term-implies: Gamma ⊢ (phi ⇒ psi), 
cubical-term-at: u(a), 
face-0: 0(𝔽), 
lattice-0: 0, 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
empty-fset: {}, 
nil: [], 
it: ⋅
Lemmas referenced : 
cat_arrow_triple_lemma, 
ob_pair_lemma, 
cat_ob_pair_lemma, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cube_set_map_wf, 
context-subset_wf, 
face-and_wf, 
face-term-implies_wf, 
face-0_wf, 
cubical-term_wf, 
face-type_wf, 
cubical_set_wf, 
void-list-equality, 
nil_wf, 
face-lattice-0-not-1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
thin, 
sqequalHypSubstitution, 
setElimination, 
rename, 
sqequalRule, 
extract_by_obid, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
universeIsType, 
isectElimination, 
lambdaEquality_alt, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
voidEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[H:j\mvdash{}].
    \mforall{}[sigma:H  j{}\mrightarrow{}  Gamma,  (phi  \mwedge{}  psi)].  \mforall{}[I:fset(\mBbbN{})].    (\mneg{}H(I))  supposing  Gamma  \mvdash{}  ((phi  \mwedge{}  psi)  {}\mRightarrow{}  0(\mBbbF{}))
Date html generated:
2020_05_20-PM-03_07_13
Last ObjectModification:
2020_04_04-PM-05_23_46
Theory : cubical!type!theory
Home
Index