Nuprl Lemma : nc-s-i1-j1
∀[I:fset(ℕ)]. ∀[i:ℕ]. ∀[j:{j:ℕ| ¬j ∈ I} ].  ((i1) = s ⋅ (i1) ⋅ (j1) ∈ I ⟶ I+i)
Proof
Definitions occuring in Statement : 
nc-1: (i1)
, 
nc-s: s
, 
add-name: I+i
, 
nh-comp: g ⋅ f
, 
names-hom: I ⟶ J
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
nc-1_wf, 
add-name_wf, 
equal_wf, 
squash_wf, 
true_wf, 
names-hom_wf, 
fset_wf, 
nat_wf, 
add-name-com, 
iff_weakening_equal, 
set_wf, 
not_wf, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
nh-comp-assoc, 
nc-s_wf, 
f-subset-add-name, 
nh-comp_wf, 
nc-1-s-commute, 
nh-id-left, 
s-comp-nc-1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
instantiate, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
hyp_replacement, 
intEquality, 
isect_memberEquality, 
axiomEquality, 
dependent_functionElimination
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  I\}  ].    ((i1)  =  s  \mcdot{}  (i1)  \mcdot{}  (j1))
Date html generated:
2017_10_05-AM-01_06_41
Last ObjectModification:
2017_07_28-AM-09_28_00
Theory : cubical!type!theory
Home
Index