Nuprl Lemma : s-comp-s

[I:fset(ℕ)]. ∀[i,j:ℕ].  (s ⋅ s ∈ I+i+j ⟶ I)


Proof




Definitions occuring in Statement :  nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nc-s: s nh-comp: g ⋅ f names-hom: I ⟶ J dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) all: x:A. B[x] implies:  Q squash: T prop: subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s] true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  names_wf nat_wf fset_wf f-subset-add-name1 add-name_wf f-subset-add-name equal_wf squash_wf true_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM-lift-inc dM_inc_wf names-subtype iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis isect_memberEquality axiomEquality because_Cache dependent_functionElimination independent_functionElimination applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality instantiate productEquality independent_isectElimination cumulativity natural_numberEquality imageMemberEquality baseClosed productElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i,j:\mBbbN{}].    (s  \mcdot{}  s  =  s)



Date html generated: 2017_10_05-AM-01_03_01
Last ObjectModification: 2017_07_28-AM-09_26_32

Theory : cubical!type!theory


Home Index