Nuprl Lemma : same-cubical-type-0

[Gamma:j⊢]. ∀[A,B:{Gamma, 0(𝔽) ⊢ _}].  Gamma, 0(𝔽) ⊢ B


Proof




Definitions occuring in Statement :  same-cubical-type: Gamma ⊢ B context-subset: Gamma, phi face-0: 0(𝔽) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] not: ¬A implies:  Q context-subset: Gamma, phi false: False face-0: 0(𝔽) cubical-term-at: u(a) same-cubical-type: Gamma ⊢ B uimplies: supposing a cubical-type: {X ⊢ _}
Lemmas referenced :  I_cube_pair_redex_lemma face-lattice-0-not-1 I_cube_wf context-subset_wf face-0_wf fset_wf nat_wf cubical-type_wf cubical_set_wf cubical-type-equal2 names-hom_wf cube-set-restriction_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalHypSubstitution extract_by_obid dependent_functionElimination thin Error :memTop,  hypothesis setElimination rename sqequalRule isectElimination hypothesisEquality independent_functionElimination voidElimination universeIsType axiomEquality inhabitedIsType isect_memberEquality_alt isectIsTypeImplies instantiate independent_isectElimination productElimination dependent_pairEquality_alt functionExtensionality applyEquality because_Cache functionIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A,B:\{Gamma,  0(\mBbbF{})  \mvdash{}  \_\}].    Gamma,  0(\mBbbF{})  \mvdash{}  A  =  B



Date html generated: 2020_05_20-PM-03_00_51
Last ObjectModification: 2020_04_04-PM-05_15_35

Theory : cubical!type!theory


Home Index