Nuprl Lemma : satisfies-face-lattice-tube

I:fset(ℕ). ∀i:{i:ℕ| ¬i ∈ I} . ∀phi:𝔽(I). ∀j:{j:ℕ| ¬j ∈ I+i} . ∀K:fset(ℕ). ∀g:K ⟶ I+j.
  ((face-lattice-tube(I;phi;j) g) ⇐⇒ (phi s ⋅ g) 1 ∨ ((g j) 0 ∈ Point(dM(K))) ∨ ((g j) 1 ∈ Point(dM(K))))


Proof




Definitions occuring in Statement :  name-morph-satisfies: (psi f) 1 face-lattice-tube: face-lattice-tube(I;phi;j) face-presheaf: 𝔽 I_cube: A(I) nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J dM1: 1 dM0: 0 dM: dM(I) lattice-point: Point(l) fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: all: x:A. B[x] iff: ⇐⇒ Q not: ¬A or: P ∨ Q set: {x:A| B[x]}  apply: a equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a nat: so_apply: x[s] face-lattice-tube: face-lattice-tube(I;phi;j) fl-join: fl-join(I;x;y) names: names(I) lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 and: P ∧ Q iff: ⇐⇒ Q implies:  Q rev_implies:  Q DeMorgan-algebra: DeMorganAlgebra guard: {T} names-hom: I ⟶ J uiff: uiff(P;Q) or: P ∨ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  names-hom_wf add-name_wf fset_wf nat_wf set_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self I_cube_wf face-presheaf_wf fl0_wf trivial-member-add-name1 subtype_rel_self names_wf assert_wf fset-antichain_wf union-deq_wf names-deq_wf fset-all_wf fset-contains-none_wf face-lattice-constraints_wf fl1_wf name-morph-satisfies_wf fl-join_wf cube-set-restriction_wf nc-s_wf f-subset-add-name or_wf nh-comp_wf equal_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM0_wf dM1_wf name-morph-satisfies-join name-morph-satisfies-fl0 name-morph-satisfies-fl1 name-morph-satisfies-comp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename hypothesis sqequalRule lambdaEquality applyEquality intEquality independent_isectElimination because_Cache natural_numberEquality dependent_functionElimination dependent_set_memberEquality setEquality unionEquality productEquality independent_pairFormation instantiate cumulativity universeEquality addLevel productElimination independent_functionElimination orFunctionality equalityTransitivity equalitySymmetry levelHypothesis promote_hyp unionElimination inlFormation inrFormation

Latex:
\mforall{}I:fset(\mBbbN{}).  \mforall{}i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  .  \mforall{}phi:\mBbbF{}(I).  \mforall{}j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  I+i\}  .  \mforall{}K:fset(\mBbbN{}).  \mforall{}g:K  {}\mrightarrow{}  I+j.
    ((face-lattice-tube(I;phi;j)  g)  =  1  \mLeftarrow{}{}\mRightarrow{}  (phi  s  \mcdot{}  g)  =  1  \mvee{}  ((g  j)  =  0)  \mvee{}  ((g  j)  =  1))



Date html generated: 2017_10_05-AM-01_19_26
Last ObjectModification: 2017_07_28-AM-09_33_30

Theory : cubical!type!theory


Home Index