Nuprl Lemma : geo-lt-add1_2
∀e:BasicGeometry. ∀p,q,r:{a:Point| O_X_a} .  (X ≠ p ⇒ X ≠ q ⇒ X ≠ r ⇒ p < q ⇒ p + r < q + r)
Proof
Definitions occuring in Statement : 
geo-lt: p < q, 
geo-add-length: p + q, 
basic-geometry: BasicGeometry, 
geo-X: X, 
geo-O: O, 
geo-between: a_b_c, 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
geo-lt: p < q, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
member: t ∈ T, 
cand: A c∧ B, 
geo-le: p ≤ q, 
squash: ↓T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
basic-geometry: BasicGeometry, 
euclidean-plane: EuclideanPlane, 
sq_stable: SqStable(P), 
prop: ℙ, 
guard: {T}, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
true: True, 
rev_implies: P ⇐ Q, 
basic-geometry-: BasicGeometry-, 
geo-length-type: Length, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
respects-equality: respects-equality(S;T), 
geo-strict-between: a-b-c, 
uiff: uiff(P;Q), 
or: P ∨ Q, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
geo-eq: a ≡ b
Lemmas referenced : 
sq_stable__geo-le, 
geo-add-length_wf, 
subtype-geo-length-type, 
geo-length_wf, 
geo-mk-seg_wf, 
geo-sep_wf, 
geo-le_wf, 
geo-lt_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-X_wf, 
geo-point_wf, 
geo-between_wf, 
geo-O_wf, 
geo-le-iff-between-points, 
squash_wf, 
true_wf, 
geo-length-type_wf, 
subtype_rel_self, 
iff_weakening_equal, 
geo-le-add1, 
geo-between-sep, 
geo-congruent-symmetry, 
geo-congruent-sep, 
geo-strict-between-sep3, 
geo-proper-extend-exists, 
geo-between-symmetry, 
geo-strict-between-implies-between, 
geo-between-exchange4, 
geo-between-outer-trans, 
respects-equality-quotient1, 
geo-eq_wf, 
geo-length-equiv, 
respects-equality-set-trivial, 
geo-add-length-between, 
geo-length-equality, 
geo-congruent-iff-length, 
equal_wf, 
istype-universe, 
geo-sep-sym, 
geo-add-length-comm, 
geo-add-length-assoc, 
oriented-colinear-append, 
euclidean-plane-subtype-oriented, 
oriented-plane_wf, 
cons_wf, 
nil_wf, 
cons_member, 
l_member_wf, 
geo-colinear-is-colinear-set, 
geo-strict-between-implies-colinear, 
list_ind_cons_lemma, 
istype-void, 
list_ind_nil_lemma, 
length_of_cons_lemma, 
length_of_nil_lemma, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
geo-colinear-cases, 
basic-geometry-_wf, 
stable__geo-between, 
geo-strict-between_wf, 
geo-between-trivial2, 
geo-between_functionality, 
geo-eq_weakening, 
geo-between-trivial, 
geo-strict-between-sep1, 
geo-strict-between_functionality, 
geo-between-exchange3, 
geo-add-length-cancel-left-le, 
geo-le_antisymmetry, 
geo-add-length-cancel-left, 
geo-construction-unicity-from-first, 
geo-between-implies-out2, 
geo-not-bet-and-out
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation_alt, 
hypothesisEquality, 
cut, 
hypothesis, 
independent_pairFormation, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
setElimination, 
rename, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
productIsType, 
universeIsType, 
instantiate, 
independent_isectElimination, 
dependent_functionElimination, 
inhabitedIsType, 
setIsType, 
lambdaEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
universeEquality, 
dependent_set_memberEquality_alt, 
equalityIstype, 
setEquality, 
inlFormation_alt, 
inrFormation_alt, 
isect_memberEquality_alt, 
voidElimination, 
unionElimination, 
approximateComputation, 
functionIsType, 
applyLambdaEquality
Latex:
\mforall{}e:BasicGeometry.  \mforall{}p,q,r:\{a:Point|  O\_X\_a\}  .    (X  \mneq{}  p  {}\mRightarrow{}  X  \mneq{}  q  {}\mRightarrow{}  X  \mneq{}  r  {}\mRightarrow{}  p  <  q  {}\mRightarrow{}  p  +  r  <  q  +  r)
Date html generated:
2019_10_16-PM-01_35_36
Last ObjectModification:
2019_01_11-PM-03_18_43
Theory : euclidean!plane!geometry
Home
Index