Nuprl Lemma : isosc-bisectors-between_1-ns
∀e:HeytingGeometry. ∀a,b,c,m,a',b',m':Point.
  (c # a'b' ⇒ ac ≅ bc ⇒ (c_a'_a ∧ c_b'_b) ⇒ a=m=b ⇒ a'=m'=b' ⇒ aa' ≅ bb' ⇒ c_m'_m)
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc, 
heyting-geometry: HeytingGeometry, 
geo-midpoint: a=m=b, 
geo-congruent: ab ≅ cd, 
geo-between: a_b_c, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
heyting-geometry: HeytingGeometry, 
euclidean-plane: EuclideanPlane, 
basic-geometry: BasicGeometry, 
stable: Stable{P}, 
not: ¬A, 
or: P ∨ Q, 
false: False, 
geo-eq: a ≡ b, 
iff: P ⇐⇒ Q, 
cand: A c∧ B, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
less_than: a < b, 
squash: ↓T, 
true: True, 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
geo-strict-between: a-b-c, 
basic-geometry-: BasicGeometry-, 
rev_implies: P ⇐ Q
Lemmas referenced : 
geo-congruent_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
heyting-geometry-subtype, 
subtype_rel_transitivity, 
heyting-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-midpoint_wf, 
subtype_rel_self, 
basic-geo-axioms_wf, 
geo-left-axioms_wf, 
geo-between_wf, 
geo-triangle_wf, 
geo-point_wf, 
stable__geo-between, 
false_wf, 
or_wf, 
geo-sep_wf, 
not_wf, 
minimal-double-negation-hyp-elim, 
geo-congruent_functionality, 
geo-eq_weakening, 
geo-midpoint_functionality, 
geo-between_functionality, 
geo-triangle_functionality, 
minimal-not-not-excluded-middle, 
geo-triangle-colinear, 
geo-triangle-symmetry, 
geo-sep-sym, 
geo-between-sep, 
geo-triangle-property, 
geo-colinear-is-colinear-set, 
geo-between-implies-colinear, 
length_of_cons_lemma, 
length_of_nil_lemma, 
lelt_wf, 
geo-congruent-symmetry, 
geo-congruent-sep, 
isosc-bisectors-between_1, 
geo-between-symmetry, 
geo-strict-between-implies-between, 
geo-congruence-identity3, 
geo-eq_inversion, 
geo-congruence-identity, 
at-most-one-midpoint, 
geo-between-trivial
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
setEquality, 
productEquality, 
cumulativity, 
because_Cache, 
dependent_functionElimination, 
setElimination, 
rename, 
functionEquality, 
independent_functionElimination, 
unionElimination, 
voidElimination, 
isect_memberEquality, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
promote_hyp
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,m,a',b',m':Point.
    (c  \#  a'b'  {}\mRightarrow{}  ac  \00D0  bc  {}\mRightarrow{}  (c\_a'\_a  \mwedge{}  c\_b'\_b)  {}\mRightarrow{}  a=m=b  {}\mRightarrow{}  a'=m'=b'  {}\mRightarrow{}  aa'  \00D0  bb'  {}\mRightarrow{}  c\_m'\_m)
Date html generated:
2017_10_02-PM-07_06_53
Last ObjectModification:
2017_08_16-AM-11_12_09
Theory : euclidean!plane!geometry
Home
Index