Nuprl Lemma : p_inf-l_eu-sep-exists
∀eu:EuclideanParPlane. ∀p:l,m:Line//l || m. ∀m:Line.  ((m = p ∈ (l,m:Line//l || m)) ⇒ (∃L:Line. (¬m || L)))
Proof
Definitions occuring in Statement : 
euclidean-parallel-plane: EuclideanParPlane, 
geo-Aparallel: l || m, 
geo-line: Line, 
quotient: x,y:A//B[x; y], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
so_lambda: λ2x y.t[x; y], 
euclidean-parallel-plane: EuclideanParPlane, 
so_apply: x[s1;s2], 
geo-line: Line, 
exists: ∃x:A. B[x], 
geo-equilateral: EQΔ(a;b;c), 
and: P ∧ Q, 
not: ¬A, 
geo-Aparallel: l || m, 
false: False, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
pi1: fst(t), 
pi2: snd(t), 
geo-lsep: a # bc, 
or: P ∨ Q, 
cand: A c∧ B, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
geo-strict-between: a-b-c
Lemmas referenced : 
equal_wf, 
quotient_wf, 
geo-line_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
euclidean-planes-subtype, 
subtype_rel_transitivity, 
euclidean-parallel-plane_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-Aparallel_wf, 
geoline-subtype1, 
geo-Aparallel-equiv, 
subtype_quotient, 
Euclid-Prop1, 
lsep-implies-sep, 
geo-sep_wf, 
geo-point_wf, 
not_wf, 
geo-intersect-lines, 
left-symmetry, 
euclidean-plane-subtype-basic, 
basic-geometry_wf, 
geo-sep-sym, 
geo-colinear-is-colinear-set, 
geo-strict-between-implies-colinear, 
geo-colinear-same, 
geo-colinear_wf, 
geo-left_wf, 
exists_wf, 
geo-proper-extend-exists, 
left-between-implies-right2, 
euclidean-plane-subtype-oriented, 
oriented-plane_wf, 
left-between-implies-right1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation, 
dependent_pairEquality, 
productEquality, 
voidElimination, 
unionElimination, 
independent_pairFormation
Latex:
\mforall{}eu:EuclideanParPlane.  \mforall{}p:l,m:Line//l  ||  m.  \mforall{}m:Line.    ((m  =  p)  {}\mRightarrow{}  (\mexists{}L:Line.  (\mneg{}m  ||  L)))
Date html generated:
2018_05_22-PM-01_15_37
Last ObjectModification:
2018_05_12-AM-09_04_57
Theory : euclidean!plane!geometry
Home
Index