Nuprl Lemma : hyptrans-perm_wf
∀[rv:InnerProductSpace]. ∀[e:Point]. ∀[t:ℝ].  hyptrans-perm(rv;e;t) ∈ Point supposing e^2 = r1
Proof
Definitions occuring in Statement : 
hyptrans-perm: hyptrans-perm(rv;e;t), 
hyptrans: hyptrans(rv;e;t;x), 
translation-group: translation-group(rv;e;T), 
rv-ip: x ⋅ y, 
inner-product-space: InnerProductSpace, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
ss-point: Point, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
lambda: λx.A[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
prop: ℙ, 
guard: {T}, 
hyptrans-perm: hyptrans-perm(rv;e;t), 
pi1: fst(t), 
pi2: snd(t), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
ext-eq: A ≡ B
Lemmas referenced : 
translation-group-point, 
hyptrans_wf, 
ss-point_wf, 
real_wf, 
hyptrans-is-translation-group-fun, 
req_wf, 
rv-ip_wf, 
int-to-real_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
rminus_wf, 
ss-eq_weakening, 
all_wf, 
ss-eq_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
isectElimination, 
hypothesis, 
applyEquality, 
because_Cache, 
sqequalRule, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
isect_memberEquality, 
instantiate, 
independent_isectElimination, 
dependent_set_memberEquality, 
independent_pairEquality, 
dependent_pairFormation, 
lambdaFormation, 
independent_pairFormation, 
productEquality, 
productElimination, 
functionExtensionality
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[e:Point].  \mforall{}[t:\mBbbR{}].    hyptrans-perm(rv;e;t)  \mmember{}  Point  supposing  e\^{}2  =  r1
Date html generated:
2017_10_05-AM-00_28_55
Last ObjectModification:
2017_06_26-AM-10_27_01
Theory : inner!product!spaces
Home
Index