Nuprl Lemma : hyptrans-is-translation-group-fun
∀rv:InnerProductSpace. ∀e:Point.  ((e^2 = r1) ⇒ translation-group-fun(rv;e;λt,x. hyptrans(rv;e;t;x)))
Proof
Definitions occuring in Statement : 
hyptrans: hyptrans(rv;e;t;x), 
translation-group-fun: translation-group-fun(rv;e;T), 
rv-ip: x ⋅ y, 
inner-product-space: InnerProductSpace, 
req: x = y, 
int-to-real: r(n), 
ss-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
lambda: λx.A[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
translation-group-fun: translation-group-fun(rv;e;T), 
and: P ∧ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
exists: ∃x:A. B[x], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
cand: A c∧ B, 
uiff: uiff(P;Q), 
rneq: x ≠ y, 
or: P ∨ Q, 
rev_uimplies: rev_uimplies(P;Q), 
req_int_terms: t1 ≡ t2, 
top: Top, 
rdiv: (x/y), 
less_than: a < b, 
squash: ↓T, 
true: True, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
real: ℝ, 
sq_stable: SqStable(P)
Lemmas referenced : 
hyptrans_ext, 
hyptrans_add, 
real_wf, 
hyptrans_decomp, 
set_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
rv-ip_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
rsqrt-1-plus-ip-positive, 
rsqrt_wf, 
radd-non-neg, 
rleq-int, 
false_wf, 
rv-ip-nonneg, 
radd_wf, 
rless_wf, 
equal_wf, 
hyptrans_wf, 
rv-add_wf, 
rv-mul_wf, 
rmul_wf, 
sinh_wf, 
ss-eq_wf, 
ss-sep_wf, 
exists_wf, 
all_wf, 
rneq_wf, 
ss-eq_functionality, 
hyptrans_lemma, 
ss-eq_weakening, 
ss-sep_functionality, 
hyptrans_functionality, 
req_weakening, 
rv-add_functionality, 
rsub_wf, 
inv-sinh_wf, 
rdiv_wf, 
req_functionality, 
rmul_preserves_req, 
itermSubtract_wf, 
itermAdd_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
rinv_wf2, 
radd_comm, 
req-implies-req, 
rv-ip_functionality, 
req_transitivity, 
rv-ip-add, 
radd_functionality, 
rv-ip-mul, 
rmul_functionality, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_const_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
rmul-rinv3, 
inv-sinh_functionality, 
req_inversion, 
inv-sinh-sinh, 
rv-mul_functionality, 
sinh_functionality, 
sinh-inv-sinh, 
uiff_transitivity, 
rv-mul-add-alt, 
rv-add-comm, 
rneq-inv-sinh, 
rless-implies-rless, 
rneq_functionality, 
rmul_preserves_rneq_iff2, 
rv-0_wf, 
rv-ip0, 
rless-int, 
rv-mul-sep-iff, 
rv-ip-rneq, 
ss-eq_inversion, 
rv-mul-add, 
rv-add-sep-iff, 
rv-add-assoc, 
rmul_preserves_rleq2, 
rleq_weakening_rless, 
less_than'_wf, 
nat_plus_wf, 
rminus_wf, 
itermMinus_wf, 
rleq-implies-rleq, 
rleq_functionality, 
real_term_value_minus_lemma, 
sinh-rleq, 
trivial-rleq-radd, 
sq_stable__rleq, 
rsub_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
productElimination, 
lambdaEquality, 
natural_numberEquality, 
applyEquality, 
instantiate, 
independent_functionElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
setEquality, 
productEquality, 
functionEquality, 
addLevel, 
existsFunctionality, 
allFunctionality, 
impliesFunctionality, 
andLevelFunctionality, 
allLevelFunctionality, 
impliesLevelFunctionality, 
levelHypothesis, 
existsLevelFunctionality, 
inrFormation, 
approximateComputation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_pairFormation, 
unionElimination, 
inlFormation, 
promote_hyp, 
imageMemberEquality, 
baseClosed, 
isect_memberFormation, 
independent_pairEquality, 
minusEquality, 
axiomEquality, 
imageElimination
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:Point.    ((e\^{}2  =  r1)  {}\mRightarrow{}  translation-group-fun(rv;e;\mlambda{}t,x.  hyptrans(rv;e;t;x)\000C))
Date html generated:
2017_10_05-AM-00_28_45
Last ObjectModification:
2017_07_28-AM-08_55_34
Theory : inner!product!spaces
Home
Index