Nuprl Lemma : rv-ip0
∀[rv:InnerProductSpace]. ∀[x:Point].  (x ⋅ 0 = r0)
Proof
Definitions occuring in Statement : 
rv-ip: x ⋅ y, 
inner-product-space: InnerProductSpace, 
rv-0: 0, 
ss-point: Point, 
req: x = y, 
int-to-real: r(n), 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q), 
and: P ∧ Q, 
uiff: uiff(P;Q), 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
guard: {T}, 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rmul-one-both, 
rmul-zero-both, 
radd-int, 
rmul_functionality, 
rmul-distrib2, 
rmul-identity1, 
rminus-as-rmul, 
radd_functionality, 
req_transitivity, 
uiff_transitivity, 
req_inversion, 
rmul_wf, 
req_wf, 
rminus_wf, 
radd-preserves-req, 
rv-ip-add2, 
req_weakening, 
ss-eq_inversion, 
ss-eq_weakening, 
rv-ip_functionality, 
req_functionality, 
radd_comm, 
radd_wf, 
rv-add_wf, 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
real-vector-space_subtype1, 
ss-point_wf, 
int-to-real_wf, 
rv-ip_wf, 
req_witness, 
rv-0_wf, 
inner-product-space_subtype, 
rv-add-0
Rules used in proof : 
addEquality, 
minusEquality, 
productElimination, 
dependent_functionElimination, 
isect_memberEquality, 
independent_isectElimination, 
instantiate, 
independent_functionElimination, 
natural_numberEquality, 
because_Cache, 
sqequalRule, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point].    (x  \mcdot{}  0  =  r0)
Date html generated:
2016_11_08-AM-09_15_05
Last ObjectModification:
2016_10_31-PM-03_03_53
Theory : inner!product!spaces
Home
Index