Nuprl Lemma : sinh-inv-sinh
∀[x:ℝ]. (sinh(inv-sinh(x)) = x)
Proof
Definitions occuring in Statement : 
inv-sinh: inv-sinh(x)
, 
sinh: sinh(x)
, 
req: x = y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
inv-sinh: inv-sinh(x)
, 
sinh: sinh(x)
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
false: False
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
sq_stable: SqStable(P)
Lemmas referenced : 
inv-sinh-domain, 
req_witness, 
sinh_wf, 
inv-sinh_wf, 
real_wf, 
ln_wf, 
radd_wf, 
rsqrt_wf, 
rmul_wf, 
int-to-real_wf, 
rleq_wf, 
req_wf, 
rless_wf, 
set_wf, 
rlog_wf, 
expr_wf, 
rexp_wf, 
rminus_wf, 
equal_wf, 
int-rdiv_wf, 
subtype_base_sq, 
int_subtype_base, 
equal-wf-base, 
true_wf, 
nequal_wf, 
rsub_wf, 
rdiv_wf, 
rless-int, 
rmul_preserves_req, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
itermAdd_wf, 
req-iff-rsub-is-0, 
minus-one-mul, 
itermMinus_wf, 
rmul_comm, 
req_functionality, 
int-rdiv-req, 
req_weakening, 
req_transitivity, 
radd_functionality, 
int-rinv-cancel, 
rmul-rinv3, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
sq_stable__req, 
rexp-positive, 
uiff_transitivity, 
rexp_functionality, 
rexp-rlog, 
rexp-rminus, 
rdiv_functionality, 
req_inversion, 
rless_transitivity1, 
rleq_weakening, 
rminus_functionality, 
rmul-rinv, 
rmul_functionality, 
radd-preserves-req
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
productElimination, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
sqequalRule, 
because_Cache, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
addLevel, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
voidElimination, 
baseClosed, 
inrFormation, 
independent_pairFormation, 
imageMemberEquality, 
minusEquality, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
imageElimination
Latex:
\mforall{}[x:\mBbbR{}].  (sinh(inv-sinh(x))  =  x)
Date html generated:
2017_10_04-PM-10_44_44
Last ObjectModification:
2017_06_24-AM-10_48_57
Theory : reals_2
Home
Index