Nuprl Lemma : sinh-inv-sinh
∀[x:ℝ]. (sinh(inv-sinh(x)) = x)
Proof
Definitions occuring in Statement :
inv-sinh: inv-sinh(x)
,
sinh: sinh(x)
,
req: x = y
,
real: ℝ
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
inv-sinh: inv-sinh(x)
,
sinh: sinh(x)
,
implies: P
⇒ Q
,
and: P ∧ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
int_nzero: ℤ-o
,
true: True
,
nequal: a ≠ b ∈ T
,
not: ¬A
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
guard: {T}
,
false: False
,
rneq: x ≠ y
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
rdiv: (x/y)
,
req_int_terms: t1 ≡ t2
,
top: Top
,
sq_stable: SqStable(P)
Lemmas referenced :
inv-sinh-domain,
req_witness,
sinh_wf,
inv-sinh_wf,
real_wf,
ln_wf,
radd_wf,
rsqrt_wf,
rmul_wf,
int-to-real_wf,
rleq_wf,
req_wf,
rless_wf,
set_wf,
rlog_wf,
expr_wf,
rexp_wf,
rminus_wf,
equal_wf,
int-rdiv_wf,
subtype_base_sq,
int_subtype_base,
equal-wf-base,
true_wf,
nequal_wf,
rsub_wf,
rdiv_wf,
rless-int,
rmul_preserves_req,
rinv_wf2,
itermSubtract_wf,
itermMultiply_wf,
itermVar_wf,
itermConstant_wf,
itermAdd_wf,
req-iff-rsub-is-0,
minus-one-mul,
itermMinus_wf,
rmul_comm,
req_functionality,
int-rdiv-req,
req_weakening,
req_transitivity,
radd_functionality,
int-rinv-cancel,
rmul-rinv3,
real_polynomial_null,
real_term_value_sub_lemma,
real_term_value_mul_lemma,
real_term_value_var_lemma,
real_term_value_const_lemma,
real_term_value_add_lemma,
real_term_value_minus_lemma,
sq_stable__req,
rexp-positive,
uiff_transitivity,
rexp_functionality,
rexp-rlog,
rexp-rminus,
rdiv_functionality,
req_inversion,
rless_transitivity1,
rleq_weakening,
rminus_functionality,
rmul-rinv,
rmul_functionality,
radd-preserves-req
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
isectElimination,
hypothesis,
independent_functionElimination,
dependent_set_memberEquality,
natural_numberEquality,
productElimination,
applyEquality,
lambdaEquality,
setElimination,
rename,
setEquality,
productEquality,
sqequalRule,
because_Cache,
lambdaFormation,
equalityTransitivity,
equalitySymmetry,
addLevel,
instantiate,
cumulativity,
intEquality,
independent_isectElimination,
voidElimination,
baseClosed,
inrFormation,
independent_pairFormation,
imageMemberEquality,
minusEquality,
approximateComputation,
int_eqEquality,
isect_memberEquality,
voidEquality,
imageElimination
Latex:
\mforall{}[x:\mBbbR{}]. (sinh(inv-sinh(x)) = x)
Date html generated:
2017_10_04-PM-10_44_44
Last ObjectModification:
2017_06_24-AM-10_48_57
Theory : reals_2
Home
Index