Nuprl Lemma : rexp-rminus

[x:ℝ]. (e^-(x) (r1/e^x))


Proof




Definitions occuring in Statement :  rexp: e^x rdiv: (x/y) req: y rminus: -(x) int-to-real: r(n) real: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] prop: uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) implies:  Q
Lemmas referenced :  rmul_preserves_req rexp_wf rminus_wf rdiv_wf rexp-positive req_witness int-to-real_wf rless_wf real_wf rmul_wf req_functionality req_weakening rmul-rdiv-cancel2 radd_wf req_wf req_inversion rexp-radd uiff_transitivity rexp_functionality req_transitivity radd_functionality rminus-as-rmul rmul-identity1 rmul-distrib2 rmul_functionality radd-int rmul-zero-both rexp0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache independent_isectElimination sqequalRule inrFormation dependent_functionElimination productElimination natural_numberEquality independent_functionElimination minusEquality addEquality

Latex:
\mforall{}[x:\mBbbR{}].  (e\^{}-(x)  =  (r1/e\^{}x))



Date html generated: 2016_10_26-PM-00_12_23
Last ObjectModification: 2016_09_12-PM-05_39_32

Theory : reals_2


Home Index