Nuprl Lemma : hyptrans_decomp

rv:InnerProductSpace. ∀e,x:Point.
  ∃h:Point. ∃tau:ℝ((h ⋅ r0) ∧ x ≡ sinh(tau) rsqrt(r1 h^2)*e) supposing e^2 r1


Proof




Definitions occuring in Statement :  rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-mul: a*x rv-add: y sinh: sinh(x) rsqrt: rsqrt(x) req: y rmul: b radd: b int-to-real: r(n) real: ss-eq: x ≡ y ss-point: Point uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] implies:  Q prop: subtype_rel: A ⊆B guard: {T} rneq: x ≠ y or: P ∨ Q and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A so_lambda: λ2x.t[x] so_apply: x[s] top: Top exists: x:A. B[x] pi1: fst(t) pi2: snd(t) cand: c∧ B sq_stable: SqStable(P) squash: T uiff: uiff(P;Q) rdiv: (x/y) req_int_terms: t1 ≡ t2
Lemmas referenced :  req_witness rv-ip_wf int-to-real_wf req_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf rv-decomp_wf rsqrt-1-plus-ip-positive equal_wf rless_wf rsqrt_wf radd-non-neg rleq-int false_wf rv-ip-nonneg radd_wf pi1_wf_top subtype_rel_product real_wf top_wf rleq_wf inv-sinh_wf rdiv_wf ss-eq_wf rv-add_wf rv-mul_wf rmul_wf sinh_wf exists_wf set_wf sq_stable__req sq_stable__ss-eq rinv_wf2 itermSubtract_wf itermMultiply_wf itermVar_wf req-iff-rsub-is-0 ss-eq_functionality ss-eq_weakening rv-add_functionality rv-mul_functionality rmul_functionality sinh-inv-sinh req_weakening req_transitivity rmul-rinv3 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality independent_functionElimination rename applyEquality instantiate independent_isectElimination sqequalRule because_Cache inrFormation dependent_functionElimination equalityTransitivity equalitySymmetry productElimination independent_pairFormation dependent_set_memberEquality setElimination lambdaEquality isect_memberEquality voidElimination voidEquality dependent_pairFormation productEquality setEquality imageMemberEquality baseClosed imageElimination addLevel approximateComputation int_eqEquality intEquality

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e,x:Point.
    \mexists{}h:Point.  \mexists{}tau:\mBbbR{}.  ((h  \mcdot{}  e  =  r0)  \mwedge{}  x  \mequiv{}  h  +  sinh(tau)  *  rsqrt(r1  +  h\^{}2)*e)  supposing  e\^{}2  =  r1



Date html generated: 2017_10_05-AM-00_27_53
Last ObjectModification: 2017_06_21-PM-02_26_41

Theory : inner!product!spaces


Home Index