Nuprl Lemma : hyptrans_decomp
∀rv:InnerProductSpace. ∀e,x:Point.
  ∃h:Point. ∃tau:ℝ. ((h ⋅ e = r0) ∧ x ≡ h + sinh(tau) * rsqrt(r1 + h^2)*e) supposing e^2 = r1
Proof
Definitions occuring in Statement : 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rv-mul: a*x
, 
rv-add: x + y
, 
sinh: sinh(x)
, 
rsqrt: rsqrt(x)
, 
req: x = y
, 
rmul: a * b
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
ss-eq: x ≡ y
, 
ss-point: Point
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
req_witness, 
rv-ip_wf, 
int-to-real_wf, 
req_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
rv-decomp_wf, 
rsqrt-1-plus-ip-positive, 
equal_wf, 
rless_wf, 
rsqrt_wf, 
radd-non-neg, 
rleq-int, 
false_wf, 
rv-ip-nonneg, 
radd_wf, 
pi1_wf_top, 
subtype_rel_product, 
real_wf, 
top_wf, 
rleq_wf, 
inv-sinh_wf, 
rdiv_wf, 
ss-eq_wf, 
rv-add_wf, 
rv-mul_wf, 
rmul_wf, 
sinh_wf, 
exists_wf, 
set_wf, 
sq_stable__req, 
sq_stable__ss-eq, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
ss-eq_functionality, 
ss-eq_weakening, 
rv-add_functionality, 
rv-mul_functionality, 
rmul_functionality, 
sinh-inv-sinh, 
req_weakening, 
req_transitivity, 
rmul-rinv3, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
independent_functionElimination, 
rename, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
inrFormation, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
setElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_pairFormation, 
productEquality, 
setEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
addLevel, 
approximateComputation, 
int_eqEquality, 
intEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e,x:Point.
    \mexists{}h:Point.  \mexists{}tau:\mBbbR{}.  ((h  \mcdot{}  e  =  r0)  \mwedge{}  x  \mequiv{}  h  +  sinh(tau)  *  rsqrt(r1  +  h\^{}2)*e)  supposing  e\^{}2  =  r1
Date html generated:
2017_10_05-AM-00_27_53
Last ObjectModification:
2017_06_21-PM-02_26_41
Theory : inner!product!spaces
Home
Index