Nuprl Lemma : rv-decomp_wf

[rv:InnerProductSpace]. ∀[e,x:Point].  rv-decomp(rv;x;e) ∈ {p:Point × ℝx ≡ fst(p) snd(p)*e ∧ (fst(p) ⋅ r0)}  su\000Cpposing e^2 r1


Proof




Definitions occuring in Statement :  rv-decomp: rv-decomp(rv;x;e) rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-mul: a*x rv-add: y req: y int-to-real: r(n) real: ss-eq: x ≡ y ss-point: Point uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  product: x:A × B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rv-decomp: rv-decomp(rv;x;e) subtype_rel: A ⊆B and: P ∧ Q cand: c∧ B pi1: fst(t) pi2: snd(t) prop: guard: {T} all: x:A. B[x] implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top
Lemmas referenced :  rv-sub_wf inner-product-space_subtype rv-mul_wf rv-ip_wf ss-eq_wf rv-add_wf req_wf int-to-real_wf ss-point_wf real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-eq_weakening rsub_wf rmul_wf itermSubtract_wf itermVar_wf itermMultiply_wf itermConstant_wf req-iff-rsub-is-0 ss-eq_functionality rv-sub-add req_functionality rv-ip-sub req_weakening rsub_functionality rv-ip-mul rmul_functionality real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_mul_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality independent_pairEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule because_Cache independent_pairFormation productEquality productElimination natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality instantiate independent_isectElimination dependent_functionElimination independent_functionElimination approximateComputation lambdaEquality int_eqEquality intEquality voidElimination voidEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[e,x:Point].
    rv-decomp(rv;x;e)  \mmember{}  \{p:Point  \mtimes{}  \mBbbR{}|  x  \mequiv{}  fst(p)  +  snd(p)*e  \mwedge{}  (fst(p)  \mcdot{}  e  =  r0)\}    supposing  e\^{}2  =  r1



Date html generated: 2017_10_05-AM-00_20_59
Last ObjectModification: 2017_06_21-PM-02_28_55

Theory : inner!product!spaces


Home Index