Nuprl Lemma : translation-group-point
∀rv:InnerProductSpace. ∀e:Point. ∀T:ℝ ⟶ Point ⟶ Point.
  (translation-group-fun(rv;e;T)
  ⇒ Point ≡ {fg:Point ⟶ Point × (Point ⟶ Point)| 
              ∃t:ℝ. ((∀x:Point. (fst(fg)) x ≡ T t x) ∧ (∀x:Point. (snd(fg)) x ≡ T -(t) x))} )
Proof
Definitions occuring in Statement : 
translation-group: translation-group(rv;e;T), 
translation-group-fun: translation-group-fun(rv;e;T), 
inner-product-space: InnerProductSpace, 
rminus: -(x), 
real: ℝ, 
ss-eq: x ≡ y, 
ss-point: Point, 
ext-eq: A ≡ B, 
pi1: fst(t), 
pi2: snd(t), 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
product: x:A × B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
ss-point: Point, 
translation-group: translation-group(rv;e;T), 
mk-s-subgroup: mk-s-subgroup(sg;x.P[x]), 
mk-s-group: mk-s-group(ss; e; i; o; sep; invsep), 
member: t ∈ T, 
top: Top, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
set-ss: set-ss(ss;x.P[x]), 
mk-ss: mk-ss, 
btrue: tt, 
uall: ∀[x:A]. B[x], 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
pi1: fst(t), 
pi2: snd(t), 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}, 
uimplies: b supposing a, 
trans-apply: T_t(x), 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
iff: P ⇐⇒ Q, 
translation-group-fun: translation-group-fun(rv;e;T), 
or: P ∨ Q, 
false: False
Lemmas referenced : 
rec_select_update_lemma, 
rv-perm-point, 
all_wf, 
ss-eq_wf, 
real_wf, 
rminus_wf, 
exists_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ss-sep_wf, 
translation-group-fun_wf, 
trans-apply_wf, 
ss-eq_weakening, 
ss-eq_functionality, 
trans-apply_functionality, 
req_weakening, 
radd_wf, 
int-to-real_wf, 
radd-rminus-both, 
ss-eq_inversion, 
trans-apply-add, 
trans-apply-0, 
radd-rminus, 
ss-eq_transitivity, 
ss-sep_functionality, 
rneq_irreflexivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isectElimination, 
independent_pairFormation, 
lambdaEquality, 
setElimination, 
rename, 
productElimination, 
dependent_set_memberEquality, 
independent_pairEquality, 
hypothesisEquality, 
dependent_pairFormation, 
because_Cache, 
productEquality, 
applyEquality, 
functionExtensionality, 
setEquality, 
functionEquality, 
instantiate, 
independent_isectElimination, 
independent_functionElimination, 
natural_numberEquality, 
addLevel, 
allFunctionality, 
impliesFunctionality, 
levelHypothesis, 
andLevelFunctionality, 
allLevelFunctionality, 
unionElimination
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:Point.  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point.
    (translation-group-fun(rv;e;T)
    {}\mRightarrow{}  Point  \mequiv{}  \{fg:Point  {}\mrightarrow{}  Point  \mtimes{}  (Point  {}\mrightarrow{}  Point)| 
                            \mexists{}t:\mBbbR{}.  ((\mforall{}x:Point.  (fst(fg))  x  \mequiv{}  T  t  x)  \mwedge{}  (\mforall{}x:Point.  (snd(fg))  x  \mequiv{}  T  -(t)  x))\}  )
Date html generated:
2017_10_05-AM-00_22_19
Last ObjectModification:
2017_06_26-AM-10_19_53
Theory : inner!product!spaces
Home
Index