Nuprl Lemma : ip-between_functionality
∀[rv:InnerProductSpace]. ∀[a,b,c,a2,b2,c2:Point].  (a ≡ a2 ⇒ b ≡ b2 ⇒ c ≡ c2 ⇒ {a_b_c ⇐⇒ a2_b2_c2})
Proof
Definitions occuring in Statement : 
ip-between: a_b_c, 
inner-product-space: InnerProductSpace, 
ss-eq: x ≡ y, 
ss-point: Point, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
ip-between: a_b_c, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
ip-between_wf, 
ss-eq_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
req_witness, 
radd_wf, 
rmul_wf, 
rv-norm_wf, 
rv-sub_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
rv-ip_wf, 
ss-point_wf, 
req_functionality, 
radd_functionality, 
rv-ip_functionality, 
rv-sub_functionality, 
rmul_functionality, 
rv-norm_functionality, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
natural_numberEquality, 
independent_functionElimination, 
isect_memberEquality
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c,a2,b2,c2:Point].
    (a  \mequiv{}  a2  {}\mRightarrow{}  b  \mequiv{}  b2  {}\mRightarrow{}  c  \mequiv{}  c2  {}\mRightarrow{}  \{a\_b\_c  \mLeftarrow{}{}\mRightarrow{}  a2\_b2\_c2\})
Date html generated:
2017_10_04-PM-11_57_00
Last ObjectModification:
2017_03_09-PM-05_27_01
Theory : inner!product!spaces
Home
Index