Nuprl Lemma : ip-triangle_functionality

rv:InnerProductSpace. ∀a,b,c,a2,b2,c2:Point.  (a ≡ a2  b ≡ b2  c ≡ c2  (a;b;c) ⇐⇒ Δ(a2;b2;c2)})


Proof




Definitions occuring in Statement :  ip-triangle: Δ(a;b;c) inner-product-space: InnerProductSpace ss-eq: x ≡ y ss-point: Point guard: {T} all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q guard: {T} iff: ⇐⇒ Q and: P ∧ Q ip-triangle: Δ(a;b;c) member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  ip-triangle_wf ss-eq_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-point_wf rabs_wf rv-ip_wf rv-sub_wf rmul_wf rv-norm_wf rless_functionality rabs_functionality rv-ip_functionality rv-sub_functionality rmul_functionality rv-norm_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis applyEquality instantiate independent_isectElimination sqequalRule because_Cache dependent_functionElimination productElimination independent_functionElimination

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c,a2,b2,c2:Point.
    (a  \mequiv{}  a2  {}\mRightarrow{}  b  \mequiv{}  b2  {}\mRightarrow{}  c  \mequiv{}  c2  {}\mRightarrow{}  \{\mDelta{}(a;b;c)  \mLeftarrow{}{}\mRightarrow{}  \mDelta{}(a2;b2;c2)\})



Date html generated: 2017_10_04-PM-11_58_03
Last ObjectModification: 2017_03_09-PM-05_32_31

Theory : inner!product!spaces


Home Index