Nuprl Lemma : ip-triangle_functionality
∀rv:InnerProductSpace. ∀a,b,c,a2,b2,c2:Point.  (a ≡ a2 
⇒ b ≡ b2 
⇒ c ≡ c2 
⇒ {Δ(a;b;c) 
⇐⇒ Δ(a2;b2;c2)})
Proof
Definitions occuring in Statement : 
ip-triangle: Δ(a;b;c)
, 
inner-product-space: InnerProductSpace
, 
ss-eq: x ≡ y
, 
ss-point: Point
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
ip-triangle: Δ(a;b;c)
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
ip-triangle_wf, 
ss-eq_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ss-point_wf, 
rabs_wf, 
rv-ip_wf, 
rv-sub_wf, 
rmul_wf, 
rv-norm_wf, 
rless_functionality, 
rabs_functionality, 
rv-ip_functionality, 
rv-sub_functionality, 
rmul_functionality, 
rv-norm_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c,a2,b2,c2:Point.
    (a  \mequiv{}  a2  {}\mRightarrow{}  b  \mequiv{}  b2  {}\mRightarrow{}  c  \mequiv{}  c2  {}\mRightarrow{}  \{\mDelta{}(a;b;c)  \mLeftarrow{}{}\mRightarrow{}  \mDelta{}(a2;b2;c2)\})
Date html generated:
2017_10_04-PM-11_58_03
Last ObjectModification:
2017_03_09-PM-05_32_31
Theory : inner!product!spaces
Home
Index