Nuprl Lemma : rv-mul-sub
∀[rv:RealVectorSpace]. ∀[a,b:ℝ]. ∀[x:Point]. a - b*x ≡ a*x - b*x
Proof
Definitions occuring in Statement :
rv-sub: x - y
,
rv-mul: a*x
,
real-vector-space: RealVectorSpace
,
rsub: x - y
,
real: ℝ
,
ss-eq: x ≡ y
,
ss-point: Point
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
rv-sub: x - y
,
rv-minus: -x
,
ss-eq: x ≡ y
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
rev_uimplies: rev_uimplies(P;Q)
,
itermConstant: "const"
,
req_int_terms: t1 ≡ t2
,
top: Top
Lemmas referenced :
ss-sep_wf,
real-vector-space_subtype1,
rv-mul_wf,
rsub_wf,
rv-sub_wf,
ss-point_wf,
real_wf,
real-vector-space_wf,
rv-add_wf,
int-to-real_wf,
rmul_wf,
ss-eq_functionality,
ss-eq_weakening,
rv-add_functionality,
rv-mul-mul,
radd_wf,
real_term_polynomial,
itermSubtract_wf,
itermVar_wf,
itermAdd_wf,
itermMultiply_wf,
itermConstant_wf,
real_term_value_const_lemma,
real_term_value_sub_lemma,
real_term_value_var_lemma,
real_term_value_add_lemma,
real_term_value_mul_lemma,
req-iff-rsub-is-0,
rv-mul-add,
rv-mul_functionality
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
sqequalHypSubstitution,
lambdaEquality,
dependent_functionElimination,
thin,
hypothesisEquality,
because_Cache,
extract_by_obid,
isectElimination,
applyEquality,
hypothesis,
isect_memberEquality,
voidElimination,
minusEquality,
natural_numberEquality,
independent_isectElimination,
independent_functionElimination,
productElimination,
computeAll,
int_eqEquality,
intEquality,
voidEquality
Latex:
\mforall{}[rv:RealVectorSpace]. \mforall{}[a,b:\mBbbR{}]. \mforall{}[x:Point]. a - b*x \mequiv{} a*x - b*x
Date html generated:
2017_10_04-PM-11_51_20
Last ObjectModification:
2017_07_28-AM-08_53_56
Theory : inner!product!spaces
Home
Index