Nuprl Lemma : rv-mul-sub

[rv:RealVectorSpace]. ∀[a,b:ℝ]. ∀[x:Point].  b*x ≡ a*x b*x


Proof




Definitions occuring in Statement :  rv-sub: y rv-mul: a*x real-vector-space: RealVectorSpace rsub: y real: ss-eq: x ≡ y ss-point: Point uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rv-sub: y rv-minus: -x ss-eq: x ≡ y not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: all: x:A. B[x] uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top
Lemmas referenced :  ss-sep_wf real-vector-space_subtype1 rv-mul_wf rsub_wf rv-sub_wf ss-point_wf real_wf real-vector-space_wf rv-add_wf int-to-real_wf rmul_wf ss-eq_functionality ss-eq_weakening rv-add_functionality rv-mul-mul radd_wf real_term_polynomial itermSubtract_wf itermVar_wf itermAdd_wf itermMultiply_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_mul_lemma req-iff-rsub-is-0 rv-mul-add rv-mul_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality because_Cache extract_by_obid isectElimination applyEquality hypothesis isect_memberEquality voidElimination minusEquality natural_numberEquality independent_isectElimination independent_functionElimination productElimination computeAll int_eqEquality intEquality voidEquality

Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[a,b:\mBbbR{}].  \mforall{}[x:Point].    a  -  b*x  \mequiv{}  a*x  -  b*x



Date html generated: 2017_10_04-PM-11_51_20
Last ObjectModification: 2017_07_28-AM-08_53_56

Theory : inner!product!spaces


Home Index