Nuprl Lemma : rv-norm-equal-iff
∀[rv:InnerProductSpace]. ∀[x,y:Point].  uiff(||x|| = ||y||;x^2 = y^2)
Proof
Definitions occuring in Statement : 
rv-norm: ||x||, 
rv-ip: x ⋅ y, 
inner-product-space: InnerProductSpace, 
req: x = y, 
ss-point: Point, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
guard: {T}
Lemmas referenced : 
iff_weakening_uiff, 
req_wf, 
rv-norm_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
rmul_wf, 
rv-ip_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
rv-norm-eq-iff, 
rv-norm-nonneg, 
req_witness, 
uiff_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
req_functionality, 
req_weakening, 
rv-norm-squared
Rules used in proof : 
cut, 
addLevel, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
productElimination, 
thin, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
independent_isectElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
natural_numberEquality, 
sqequalRule, 
because_Cache, 
dependent_set_memberEquality, 
lambdaFormation, 
independent_functionElimination, 
cumulativity, 
universeEquality, 
instantiate, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x,y:Point].    uiff(||x||  =  ||y||;x\^{}2  =  y\^{}2)
Date html generated:
2017_10_04-PM-11_51_33
Last ObjectModification:
2017_03_13-AM-10_44_03
Theory : inner!product!spaces
Home
Index