Nuprl Lemma : rv-norm-positive-iff-ext

rv:InnerProductSpace. ∀x:Point.  (x ⇐⇒ r0 < ||x||)


Proof




Definitions occuring in Statement :  rv-norm: ||x|| inner-product-space: InnerProductSpace rv-0: 0 ss-sep: y ss-point: Point rless: x < y int-to-real: r(n) all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  rnexp-rless rless-iff4 iff_weakening_equal regular-less-iff rless-iff-large-diff rless_functionality so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] squash: T or: P ∨ Q guard: {T} prop: has-value: (a)↓ implies:  Q all: x:A. B[x] and: P ∧ Q strict4: strict4(F) uimplies: supposing a top: Top so_apply: x[s1;s2;s3;s4] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) uall: [x:A]. B[x] rv-ip-positive rv-ip: x ⋅ y sq_stable__rless rsqrt-positive rv-norm-positive rv-norm-positive-iff member: t ∈ T
Lemmas referenced :  top_wf is-exception_wf base_wf has-value_wf_base lifting-strict-spread rv-norm-positive-iff rnexp-rless rless-iff4 iff_weakening_equal regular-less-iff rless-iff-large-diff rless_functionality rv-ip-positive sq_stable__rless rsqrt-positive rv-norm-positive
Rules used in proof :  equalitySymmetry equalityTransitivity dependent_functionElimination inlFormation exceptionSqequal imageElimination imageMemberEquality inrFormation applyExceptionCases hypothesisEquality closedConclusion baseApply callbyvalueApply lambdaFormation independent_pairFormation independent_isectElimination voidEquality voidElimination isect_memberEquality baseClosed isectElimination sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}x:Point.    (x  \#  0  \mLeftarrow{}{}\mRightarrow{}  r0  <  ||x||)



Date html generated: 2016_11_08-AM-09_16_29
Last ObjectModification: 2016_11_02-PM-04_14_30

Theory : inner!product!spaces


Home Index