Nuprl Lemma : rv-sub-sep
∀rv:RealVectorSpace. ∀x,x',y,y':Point.  (x - y # x' - y' 
⇒ (x # x' ∨ y # y'))
Proof
Definitions occuring in Statement : 
rv-sub: x - y
, 
real-vector-space: RealVectorSpace
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rv-sub: x - y
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
rv-minus: -x
, 
uimplies: b supposing a
, 
false: False
Lemmas referenced : 
rv-add-sep, 
rv-minus_wf, 
ss-sep_wf, 
real-vector-space_subtype1, 
rv-sub_wf, 
ss-point_wf, 
real-vector-space_wf, 
int-to-real_wf, 
rv-mul-sep, 
rneq_irreflexivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
unionElimination, 
inlFormation, 
applyEquality, 
because_Cache, 
sqequalRule, 
inrFormation, 
minusEquality, 
natural_numberEquality, 
independent_isectElimination, 
voidElimination
Latex:
\mforall{}rv:RealVectorSpace.  \mforall{}x,x',y,y':Point.    (x  -  y  \#  x'  -  y'  {}\mRightarrow{}  (x  \#  x'  \mvee{}  y  \#  y'))
Date html generated:
2017_10_04-PM-11_51_17
Last ObjectModification:
2017_06_27-AM-10_46_13
Theory : inner!product!spaces
Home
Index