Nuprl Lemma : rv-sub-sep

rv:RealVectorSpace. ∀x,x',y,y':Point.  (x x' y'  (x x' ∨ y'))


Proof




Definitions occuring in Statement :  rv-sub: y real-vector-space: RealVectorSpace ss-sep: y ss-point: Point all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rv-sub: y member: t ∈ T uall: [x:A]. B[x] or: P ∨ Q prop: subtype_rel: A ⊆B guard: {T} rv-minus: -x uimplies: supposing a false: False
Lemmas referenced :  rv-add-sep rv-minus_wf ss-sep_wf real-vector-space_subtype1 rv-sub_wf ss-point_wf real-vector-space_wf int-to-real_wf rv-mul-sep rneq_irreflexivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality isectElimination hypothesis independent_functionElimination unionElimination inlFormation applyEquality because_Cache sqequalRule inrFormation minusEquality natural_numberEquality independent_isectElimination voidElimination

Latex:
\mforall{}rv:RealVectorSpace.  \mforall{}x,x',y,y':Point.    (x  -  y  \#  x'  -  y'  {}\mRightarrow{}  (x  \#  x'  \mvee{}  y  \#  y'))



Date html generated: 2017_10_04-PM-11_51_17
Last ObjectModification: 2017_06_27-AM-10_46_13

Theory : inner!product!spaces


Home Index