Nuprl Lemma : trans-from-kernel_functionality
∀rv:InnerProductSpace. ∀e:{e:Point| e^2 = r1} . ∀f,g:{h:Point| h ⋅ e = r0}  ⟶ ℝ ⟶ ℝ.
  (trans-kernel-fun(rv;e;f)
  ⇒ (∀h:{h:Point| h ⋅ e = r0} . ∀r:ℝ.  ((f h (g h r)) = r))
  ⇒ (∀s,t:ℝ. ∀x,y:Point.  ((s = t) ⇒ x ≡ y ⇒ trans-from-kernel(rv;e;f;g;s;x) ≡ trans-from-kernel(rv;e;f;g;t;y))))
Proof
Definitions occuring in Statement : 
trans-from-kernel: trans-from-kernel(rv;e;f;g;t;x), 
trans-kernel-fun: trans-kernel-fun(rv;e;f), 
rv-ip: x ⋅ y, 
inner-product-space: InnerProductSpace, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
ss-eq: x ≡ y, 
ss-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
ss-eq: x ≡ y, 
not: ¬A, 
or: P ∨ Q, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
false: False, 
iff: P ⇐⇒ Q, 
and: P ∧ Q
Lemmas referenced : 
trans-from-kernel-sep, 
ss-sep_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
trans-from-kernel_wf, 
ss-point_wf, 
req_wf, 
rv-ip_wf, 
int-to-real_wf, 
ss-eq_wf, 
real_wf, 
all_wf, 
trans-kernel-fun_wf, 
set_wf, 
rneq_irreflexivity, 
rneq_functionality, 
req_weakening
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
unionElimination, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
setElimination, 
rename, 
dependent_set_memberEquality, 
because_Cache, 
functionExtensionality, 
setEquality, 
natural_numberEquality, 
lambdaEquality, 
functionEquality, 
voidElimination, 
productElimination
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:\{e:Point|  e\^{}2  =  r1\}  .  \mforall{}f,g:\{h:Point|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}.
    (trans-kernel-fun(rv;e;f)
    {}\mRightarrow{}  (\mforall{}h:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}r:\mBbbR{}.    ((f  h  (g  h  r))  =  r))
    {}\mRightarrow{}  (\mforall{}s,t:\mBbbR{}.  \mforall{}x,y:Point.
                ((s  =  t)  {}\mRightarrow{}  x  \mequiv{}  y  {}\mRightarrow{}  trans-from-kernel(rv;e;f;g;s;x)  \mequiv{}  trans-from-kernel(rv;e;f;g;t;y))))
Date html generated:
2017_10_05-AM-00_24_32
Last ObjectModification:
2017_06_30-PM-02_06_32
Theory : inner!product!spaces
Home
Index