Nuprl Lemma : trans-from-kernel-sep

rv:InnerProductSpace. ∀e:{e:Point| e^2 r1} . ∀f,g:{h:Point| h ⋅ r0}  ⟶ ℝ ⟶ ℝ.
  (trans-kernel-fun(rv;e;f)
   (∀h:{h:Point| h ⋅ r0} . ∀r:ℝ.  ((f (g r)) r))
   (∀s,t:ℝ. ∀x,y:Point.  (trans-from-kernel(rv;e;f;g;s;x) trans-from-kernel(rv;e;f;g;t;y)  (x y ∨ s ≠ t))))


Proof




Definitions occuring in Statement :  trans-from-kernel: trans-from-kernel(rv;e;f;g;t;x) trans-kernel-fun: trans-kernel-fun(rv;e;f) rv-ip: x ⋅ y inner-product-space: InnerProductSpace rneq: x ≠ y req: y int-to-real: r(n) real: ss-sep: y ss-point: Point all: x:A. B[x] implies:  Q or: P ∨ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] sq_stable: SqStable(P) squash: T guard: {T} and: P ∧ Q exists: x:A. B[x] trans-kernel-fun: trans-kernel-fun(rv;e;f) prop: subtype_rel: A ⊆B uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top trans-from-kernel: trans-from-kernel(rv;e;f;g;t;x) rv-decomp: rv-decomp(rv;x;e) or: P ∨ Q true: True
Lemmas referenced :  kernel-fun-properties sq_stable__req rv-ip_wf int-to-real_wf real_wf all_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf req_wf trans-kernel-fun_wf set_wf rv-sub_wf rv-mul_wf rsub_wf rmul_wf itermSubtract_wf itermVar_wf itermMultiply_wf itermConstant_wf req-iff-rsub-is-0 req_functionality req_transitivity rv-ip-sub rsub_functionality req_weakening rv-ip-mul rmul_functionality real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_mul_lemma real_term_value_const_lemma rv-sub-sep ss-sep_wf rv-add-sep radd_wf rneq_wf ss-sep-irrefl rv-add_wf equal_wf rv-mul-sep rv-ip-rneq member_wf squash_wf true_wf rneq-radd
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename because_Cache hypothesis independent_functionElimination isectElimination natural_numberEquality sqequalRule imageMemberEquality baseClosed imageElimination productElimination promote_hyp setEquality applyEquality instantiate independent_isectElimination lambdaEquality functionExtensionality dependent_set_memberEquality functionEquality approximateComputation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality unionElimination inlFormation equalityTransitivity equalitySymmetry hyp_replacement universeEquality applyLambdaEquality inrFormation

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:\{e:Point|  e\^{}2  =  r1\}  .  \mforall{}f,g:\{h:Point|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}.
    (trans-kernel-fun(rv;e;f)
    {}\mRightarrow{}  (\mforall{}h:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}r:\mBbbR{}.    ((f  h  (g  h  r))  =  r))
    {}\mRightarrow{}  (\mforall{}s,t:\mBbbR{}.  \mforall{}x,y:Point.
                (trans-from-kernel(rv;e;f;g;s;x)  \#  trans-from-kernel(rv;e;f;g;t;y)  {}\mRightarrow{}  (x  \#  y  \mvee{}  s  \mneq{}  t))))



Date html generated: 2017_10_05-AM-00_24_27
Last ObjectModification: 2017_06_30-PM-02_05_58

Theory : inner!product!spaces


Home Index