Nuprl Lemma : trans-from-kernel-sep
∀rv:InnerProductSpace. ∀e:{e:Point| e^2 = r1} . ∀f,g:{h:Point| h ⋅ e = r0}  ⟶ ℝ ⟶ ℝ.
  (trans-kernel-fun(rv;e;f)
  
⇒ (∀h:{h:Point| h ⋅ e = r0} . ∀r:ℝ.  ((f h (g h r)) = r))
  
⇒ (∀s,t:ℝ. ∀x,y:Point.  (trans-from-kernel(rv;e;f;g;s;x) # trans-from-kernel(rv;e;f;g;t;y) 
⇒ (x # y ∨ s ≠ t))))
Proof
Definitions occuring in Statement : 
trans-from-kernel: trans-from-kernel(rv;e;f;g;t;x)
, 
trans-kernel-fun: trans-kernel-fun(rv;e;f)
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rneq: x ≠ y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
guard: {T}
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
trans-kernel-fun: trans-kernel-fun(rv;e;f)
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
, 
trans-from-kernel: trans-from-kernel(rv;e;f;g;t;x)
, 
rv-decomp: rv-decomp(rv;x;e)
, 
or: P ∨ Q
, 
true: True
Lemmas referenced : 
kernel-fun-properties, 
sq_stable__req, 
rv-ip_wf, 
int-to-real_wf, 
real_wf, 
all_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
req_wf, 
trans-kernel-fun_wf, 
set_wf, 
rv-sub_wf, 
rv-mul_wf, 
rsub_wf, 
rmul_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
req_functionality, 
req_transitivity, 
rv-ip-sub, 
rsub_functionality, 
req_weakening, 
rv-ip-mul, 
rmul_functionality, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
rv-sub-sep, 
ss-sep_wf, 
rv-add-sep, 
radd_wf, 
rneq_wf, 
ss-sep-irrefl, 
rv-add_wf, 
equal_wf, 
rv-mul-sep, 
rv-ip-rneq, 
member_wf, 
squash_wf, 
true_wf, 
rneq-radd
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
independent_functionElimination, 
isectElimination, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
promote_hyp, 
setEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
functionEquality, 
approximateComputation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
inlFormation, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
universeEquality, 
applyLambdaEquality, 
inrFormation
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:\{e:Point|  e\^{}2  =  r1\}  .  \mforall{}f,g:\{h:Point|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}.
    (trans-kernel-fun(rv;e;f)
    {}\mRightarrow{}  (\mforall{}h:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}r:\mBbbR{}.    ((f  h  (g  h  r))  =  r))
    {}\mRightarrow{}  (\mforall{}s,t:\mBbbR{}.  \mforall{}x,y:Point.
                (trans-from-kernel(rv;e;f;g;s;x)  \#  trans-from-kernel(rv;e;f;g;t;y)  {}\mRightarrow{}  (x  \#  y  \mvee{}  s  \mneq{}  t))))
Date html generated:
2017_10_05-AM-00_24_27
Last ObjectModification:
2017_06_30-PM-02_05_58
Theory : inner!product!spaces
Home
Index