Nuprl Lemma : trans-kernel_functionality
∀rv:InnerProductSpace. ∀e:Point. ∀T:ℝ ⟶ Point ⟶ Point.
  ((e^2 = r1)
  
⇒ translation-group-fun(rv;e;T)
  
⇒ (∀h1,h2:{h:Point| h ⋅ e = r0} . ∀t,s:ℝ.  (ρ(h1;t) = ρ(h2;s)) supposing ((t = s) and h1 ≡ h2)))
Proof
Definitions occuring in Statement : 
trans-kernel: ρ(h;t)
, 
translation-group-fun: translation-group-fun(rv;e;T)
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
ss-eq: x ≡ y
, 
ss-point: Point
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
trans-kernel-fun: trans-kernel-fun(rv;e;f)
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
not: ¬A
, 
or: P ∨ Q
, 
ss-eq: x ≡ y
, 
false: False
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
trans-kernel-is-kernel-fun, 
req_witness, 
trans-kernel_wf, 
real_wf, 
req_wf, 
rv-ip_wf, 
int-to-real_wf, 
ss-eq_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
set_wf, 
ss-point_wf, 
translation-group-fun_wf, 
not-rneq, 
rneq_wf, 
rneq_irreflexivity, 
rneq_functionality, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
sqequalRule, 
isectElimination, 
functionExtensionality, 
applyEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
natural_numberEquality, 
because_Cache, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
functionEquality, 
unionElimination, 
voidElimination
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:Point.  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point.
    ((e\^{}2  =  r1)
    {}\mRightarrow{}  translation-group-fun(rv;e;T)
    {}\mRightarrow{}  (\mforall{}h1,h2:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}t,s:\mBbbR{}.    (\mrho{}(h1;t)  =  \mrho{}(h2;s))  supposing  ((t  =  s)  and  h1  \mequiv{}  h2)))
Date html generated:
2017_10_05-AM-00_23_14
Last ObjectModification:
2017_07_02-PM-03_16_11
Theory : inner!product!spaces
Home
Index