Nuprl Lemma : trans-kernel_functionality

rv:InnerProductSpace. ∀e:Point. ∀T:ℝ ⟶ Point ⟶ Point.
  ((e^2 r1)
   translation-group-fun(rv;e;T)
   (∀h1,h2:{h:Point| h ⋅ r0} . ∀t,s:ℝ.  (h1;t) = ρ(h2;s)) supposing ((t s) and h1 ≡ h2)))


Proof




Definitions occuring in Statement :  trans-kernel: ρ(h;t) translation-group-fun: translation-group-fun(rv;e;T) rv-ip: x ⋅ y inner-product-space: InnerProductSpace req: y int-to-real: r(n) real: ss-eq: x ≡ y ss-point: Point uimplies: supposing a all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uimplies: supposing a member: t ∈ T trans-kernel-fun: trans-kernel-fun(rv;e;f) and: P ∧ Q uall: [x:A]. B[x] prop: subtype_rel: A ⊆B guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] not: ¬A or: P ∨ Q ss-eq: x ≡ y false: False iff: ⇐⇒ Q
Lemmas referenced :  trans-kernel-is-kernel-fun req_witness trans-kernel_wf real_wf req_wf rv-ip_wf int-to-real_wf ss-eq_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf set_wf ss-point_wf translation-group-fun_wf not-rneq rneq_wf rneq_irreflexivity rneq_functionality req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination sqequalRule isectElimination functionExtensionality applyEquality setElimination rename dependent_set_memberEquality natural_numberEquality because_Cache isect_memberEquality equalityTransitivity equalitySymmetry instantiate independent_isectElimination lambdaEquality functionEquality unionElimination voidElimination

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:Point.  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point.
    ((e\^{}2  =  r1)
    {}\mRightarrow{}  translation-group-fun(rv;e;T)
    {}\mRightarrow{}  (\mforall{}h1,h2:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}t,s:\mBbbR{}.    (\mrho{}(h1;t)  =  \mrho{}(h2;s))  supposing  ((t  =  s)  and  h1  \mequiv{}  h2)))



Date html generated: 2017_10_05-AM-00_23_14
Last ObjectModification: 2017_07_02-PM-03_16_11

Theory : inner!product!spaces


Home Index