Nuprl Lemma : path-in-union
∀[A,B:SeparationSpace].
  ∀f:Point(Path(A + B))
    (((∀x:{x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)} . (↑isl(f@x))) ∧ (λx.outl(f x) ∈ Point(Path(A))))
    ∨ ((∀x:{x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)} . (↑isr(f@x))) ∧ (λx.outr(f x) ∈ Point(Path(B)))))
Proof
Definitions occuring in Statement : 
path-at: p@t, 
path-ss: Path(X), 
union-ss: ss1 + ss2, 
ss-point: Point(ss), 
separation-space: SeparationSpace, 
rleq: x ≤ y, 
int-to-real: r(n), 
real: ℝ, 
outr: outr(x), 
outl: outl(x), 
assert: ↑b, 
isr: isr(x), 
isl: isl(x), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
or: P ∨ Q, 
and: P ∧ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
apply: f a, 
lambda: λx.A[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
union-ss: ss1 + ss2, 
ss-point: Point(ss), 
mk-ss: Point=P #=Sep cotrans=C, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
isl: isl(x), 
and: P ∧ Q, 
prop: ℙ, 
isr: isr(x), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
so_lambda: λ2x.t[x], 
guard: {T}, 
uimplies: b supposing a, 
true: True, 
ss-sep: x # y, 
union-sep: union-sep(ss1;ss2;p;q), 
ss-eq: x ≡ y, 
top: Top, 
assert: ↑b, 
bnot: ¬bb, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
or: P ∨ Q, 
uiff: uiff(P;Q), 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
cand: A c∧ B, 
outl: outl(x), 
path-at: p@t, 
outr: outr(x)
Lemmas referenced : 
path-at_wf, 
union-ss_wf, 
member_rccint_lemma, 
rec_select_update_lemma, 
btrue_wf, 
bfalse_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
extensional-interval-to-bool-constant, 
rleq-int, 
istype-false, 
i-member_wf, 
rccint_wf, 
path-at_functionality, 
req_wf, 
ss-point_wf, 
path-ss_wf, 
separation-space_wf, 
ss-eq_wf, 
istype-void, 
assert-bnot, 
bool_cases_sqequal, 
eqff_to_assert, 
istype-assert, 
assert_witness, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
eqtt_to_assert, 
rleq_weakening_equal, 
istype-true, 
path-ss-point, 
unit_ss_point_lemma, 
unit-ss_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
Error :memTop, 
inhabitedIsType, 
unionElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
setIsType, 
universeIsType, 
productIsType, 
natural_numberEquality, 
because_Cache, 
productElimination, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
independent_isectElimination, 
setElimination, 
rename, 
voidElimination, 
isect_memberEquality_alt, 
inrFormation_alt, 
promote_hyp, 
dependent_pairFormation_alt, 
functionIsType, 
cumulativity, 
instantiate, 
inlFormation_alt, 
equalityElimination, 
applyEquality
Latex:
\mforall{}[A,B:SeparationSpace].
    \mforall{}f:Point(Path(A  +  B))
        (((\mforall{}x:\{x:\mBbbR{}|  (r0  \mleq{}  x)  \mwedge{}  (x  \mleq{}  r1)\}  .  (\muparrow{}isl(f@x)))  \mwedge{}  (\mlambda{}x.outl(f  x)  \mmember{}  Point(Path(A))))
        \mvee{}  ((\mforall{}x:\{x:\mBbbR{}|  (r0  \mleq{}  x)  \mwedge{}  (x  \mleq{}  r1)\}  .  (\muparrow{}isr(f@x)))  \mwedge{}  (\mlambda{}x.outr(f  x)  \mmember{}  Point(Path(B)))))
Date html generated:
2020_05_20-PM-01_21_15
Last ObjectModification:
2020_02_08-AM-11_40_36
Theory : intuitionistic!topology
Home
Index