Nuprl Lemma : formal-sum-mul-1

[S:Type]. ∀[K:Rng]. ∀[x:formal-sum(K;S)].  (1 x ∈ formal-sum(K;S))


Proof




Definitions occuring in Statement :  formal-sum: formal-sum(K;S) formal-sum-mul: x uall: [x:A]. B[x] universe: Type equal: t ∈ T rng: Rng rng_one: 1
Definitions unfolded in proof :  rng: Rng member: t ∈ T basic-formal-sum: basic-formal-sum(K;S) formal-sum-mul: x uall: [x:A]. B[x] true: True prop: squash: T and: P ∧ Q all: x:A. B[x] implies:  Q rev_implies:  Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] quotient: x,y:A//B[x; y] formal-sum: formal-sum(K;S)
Lemmas referenced :  rng_wf rng_car_wf bag_wf true_wf squash_wf bag-map_wf rng_times_one bag-map-trivial iff_weakening_equal equal_wf formal-sum_wf equal-wf-base rng_sig_wf rng_one_wf formal-sum-mul_wf1 bfs-equiv-rel bfs-equiv_wf basic-formal-sum_wf quotient-member-eq
Rules used in proof :  universeEquality cumulativity hypothesisEquality rename setElimination productEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction hypothesis sqequalRule cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution baseClosed imageMemberEquality natural_numberEquality productElimination functionExtensionality because_Cache functionEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality applyEquality independent_pairEquality lambdaFormation independent_functionElimination independent_isectElimination dependent_functionElimination pertypeElimination pointwiseFunctionalityForEquality

Latex:
\mforall{}[S:Type].  \mforall{}[K:Rng].  \mforall{}[x:formal-sum(K;S)].    (1  *  x  =  x)



Date html generated: 2018_05_22-PM-09_45_56
Last ObjectModification: 2018_01_09-PM-00_59_58

Theory : linear!algebra


Home Index