Nuprl Lemma : free-vs-bag-add

[G:Type]. ∀[K:CRng]. ∀[S:Type]. ∀[f:S ⟶ bag(|K| × G)]. ∀[bs:bag(S)].
  {f[b] b ∈ bs} = ⋃b∈bs.f[b] ∈ Point(free-vs(K;G)))


Proof




Definitions occuring in Statement :  free-vs: free-vs(K;S) vs-bag-add: Σ{f[b] b ∈ bs} vs-point: Point(vs) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type equal: t ∈ T crng: CRng rng_car: |r| bag-combine: x∈bs.f[x] bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] free-vs: free-vs(K;S) vs-bag-add: Σ{f[b] b ∈ bs} mk-vs: mk-vs vs-add: y vs-0: 0 all: x:A. B[x] member: t ∈ T top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt formal-sum-add: y bag-summation: Σ(x∈b). f[x] basic-formal-sum: basic-formal-sum(K;S) subtype_rel: A ⊆B vs-point: Point(vs) formal-sum: formal-sum(K;S) crng: CRng rng: Rng so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] true: True squash: T prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  rec_select_update_lemma istype-void subtype_quotient basic-formal-sum_wf bfs-equiv_wf bfs-equiv-rel bag_wf rng_car_wf crng_wf istype-universe bag-combine_wf equal_wf squash_wf true_wf bag-combine-as-accum subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality_alt voidElimination hypothesis applyEquality isectElimination setElimination rename hypothesisEquality lambdaEquality_alt because_Cache inhabitedIsType equalityTransitivity equalitySymmetry independent_isectElimination universeIsType functionIsType productEquality instantiate universeEquality natural_numberEquality imageElimination imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[G:Type].  \mforall{}[K:CRng].  \mforall{}[S:Type].  \mforall{}[f:S  {}\mrightarrow{}  bag(|K|  \mtimes{}  G)].  \mforall{}[bs:bag(S)].
    (\mSigma{}\{f[b]  |  b  \mmember{}  bs\}  =  \mcup{}b\mmember{}bs.f[b])



Date html generated: 2019_10_31-AM-06_31_23
Last ObjectModification: 2019_08_01-PM-01_39_59

Theory : linear!algebra


Home Index