Nuprl Lemma : free-vs-bag-add
∀[G:Type]. ∀[K:CRng]. ∀[S:Type]. ∀[f:S ⟶ bag(|K| × G)]. ∀[bs:bag(S)].
  (Σ{f[b] | b ∈ bs} = ⋃b∈bs.f[b] ∈ Point(free-vs(K;G)))
Proof
Definitions occuring in Statement : 
free-vs: free-vs(K;S)
, 
vs-bag-add: Σ{f[b] | b ∈ bs}
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_car: |r|
, 
bag-combine: ⋃x∈bs.f[x]
, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
free-vs: free-vs(K;S)
, 
vs-bag-add: Σ{f[b] | b ∈ bs}
, 
mk-vs: mk-vs, 
vs-add: x + y
, 
vs-0: 0
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
formal-sum-add: x + y
, 
bag-summation: Σ(x∈b). f[x]
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
subtype_rel: A ⊆r B
, 
vs-point: Point(vs)
, 
formal-sum: formal-sum(K;S)
, 
crng: CRng
, 
rng: Rng
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
rec_select_update_lemma, 
istype-void, 
subtype_quotient, 
basic-formal-sum_wf, 
bfs-equiv_wf, 
bfs-equiv-rel, 
bag_wf, 
rng_car_wf, 
crng_wf, 
istype-universe, 
bag-combine_wf, 
equal_wf, 
squash_wf, 
true_wf, 
bag-combine-as-accum, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
applyEquality, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
lambdaEquality_alt, 
because_Cache, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
universeIsType, 
functionIsType, 
productEquality, 
instantiate, 
universeEquality, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[G:Type].  \mforall{}[K:CRng].  \mforall{}[S:Type].  \mforall{}[f:S  {}\mrightarrow{}  bag(|K|  \mtimes{}  G)].  \mforall{}[bs:bag(S)].
    (\mSigma{}\{f[b]  |  b  \mmember{}  bs\}  =  \mcup{}b\mmember{}bs.f[b])
Date html generated:
2019_10_31-AM-06_31_23
Last ObjectModification:
2019_08_01-PM-01_39_59
Theory : linear!algebra
Home
Index