Nuprl Lemma : cube-complex-space_wf
∀[k:ℕ]. ∀[cc:RealCubeComplex(k)].  (|cc| ∈ Type)
Proof
Definitions occuring in Statement : 
cube-complex-space: |cc|
, 
real-cube-complex: RealCubeComplex(k)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cube-complex-space: |cc|
, 
prop: ℙ
Lemmas referenced : 
real-vec_wf, 
in-cube-complex_wf, 
real-cube-complex_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[cc:RealCubeComplex(k)].    (|cc|  \mmember{}  Type)
Date html generated:
2019_10_30-AM-11_31_55
Last ObjectModification:
2019_09_30-AM-11_25_12
Theory : real!vectors
Home
Index