Nuprl Lemma : cube-complex-space_wf

[k:ℕ]. ∀[cc:RealCubeComplex(k)].  (|cc| ∈ Type)


Proof




Definitions occuring in Statement :  cube-complex-space: |cc| real-cube-complex: RealCubeComplex(k) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cube-complex-space: |cc| prop:
Lemmas referenced :  real-vec_wf in-cube-complex_wf real-cube-complex_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule setEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[cc:RealCubeComplex(k)].    (|cc|  \mmember{}  Type)



Date html generated: 2019_10_30-AM-11_31_55
Last ObjectModification: 2019_09_30-AM-11_25_12

Theory : real!vectors


Home Index