Nuprl Lemma : in-compatible-cubes

k:ℕ. ∀c,d:ℚCube(k).
  (Compatible(c;d)
   (∀p:ℝ^k. (in-rat-cube(k;p;c)  in-rat-cube(k;p;d)  (∃f:ℚCube(k). (f ≤ c ∧ f ≤ d ∧ in-rat-cube(k;p;f))))))


Proof




Definitions occuring in Statement :  in-rat-cube: in-rat-cube(k;p;c) real-vec: ^n nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q compatible-rat-cubes: Compatible(c;d) rat-cube-face: c ≤ d rational-cube: Cube(k)
Definitions unfolded in proof :  uimplies: supposing a uiff: uiff(P;Q) nat: pi2: snd(t) pi1: fst(t) rat-interval-intersection: I ⋂ J rational-interval: Interval rational-cube: Cube(k) real-vec: ^n rat-cube-intersection: c ⋂ d in-rat-cube: in-rat-cube(k;p;c) cand: c∧ B prop: exists: x:A. B[x] rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T uall: [x:A]. B[x] compatible-rat-cubes: Compatible(c;d) implies:  Q all: x:A. B[x]
Lemmas referenced :  rat2real-qmin req_weakening rat2real-qmax rleq_functionality rmin_ub rmax_lb iff_weakening_uiff rmin_wf qmin_wf qmax_wf rmax_wf rat2real_wf rleq_wf int_seg_wf istype-nat rational-cube_wf compatible-rat-cubes_wf real-vec_wf rat-cube-face_wf in-rat-cube_wf rat-cube-intersection_wf inhabited-iff-in-rat-cube
Rules used in proof :  independent_isectElimination promote_hyp because_Cache productEquality rename setElimination natural_numberEquality equalitySymmetry equalityTransitivity equalityIstype applyEquality inhabitedIsType productIsType sqequalRule independent_pairFormation universeIsType dependent_pairFormation_alt productElimination hypothesis dependent_functionElimination hypothesisEquality isectElimination extract_by_obid introduction thin independent_functionElimination sqequalHypSubstitution cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c,d:\mBbbQ{}Cube(k).
    (Compatible(c;d)
    {}\mRightarrow{}  (\mforall{}p:\mBbbR{}\^{}k
                (in-rat-cube(k;p;c)
                {}\mRightarrow{}  in-rat-cube(k;p;d)
                {}\mRightarrow{}  (\mexists{}f:\mBbbQ{}Cube(k).  (f  \mleq{}  c  \mwedge{}  f  \mleq{}  d  \mwedge{}  in-rat-cube(k;p;f))))))



Date html generated: 2019_10_31-AM-06_03_32
Last ObjectModification: 2019_10_30-PM-07_01_25

Theory : real!vectors


Home Index