Nuprl Lemma : rat2real-qmin
∀[a,b:ℚ].  (rat2real(qmin(a;b)) = rmin(rat2real(a);rat2real(b)))
Proof
Definitions occuring in Statement : 
rat2real: rat2real(q)
, 
rmin: rmin(x;y)
, 
req: x = y
, 
uall: ∀[x:A]. B[x]
, 
qmin: qmin(x;y)
, 
rationals: ℚ
Definitions unfolded in proof : 
prop: ℙ
, 
or: P ∨ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
qle_connex, 
qmin_ub, 
qmin_lb, 
qle_reflexivity, 
rationals_wf, 
req_witness, 
rmin_wf, 
req_fake_le_antisymmetry, 
rmin_lb, 
rleq-rat2real, 
qle_wf, 
rleq_wf, 
iff_weakening_uiff, 
qmin_wf, 
rat2real_wf, 
rmin_ub
Rules used in proof : 
productIsType, 
unionElimination, 
productEquality, 
inrFormation_alt, 
inlFormation_alt, 
universeIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
sqequalRule, 
inhabitedIsType, 
independent_isectElimination, 
because_Cache, 
promote_hyp, 
independent_pairFormation, 
independent_functionElimination, 
productElimination, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[a,b:\mBbbQ{}].    (rat2real(qmin(a;b))  =  rmin(rat2real(a);rat2real(b)))
Date html generated:
2019_10_31-AM-05_58_02
Last ObjectModification:
2019_10_30-PM-06_56_59
Theory : reals
Home
Index