Nuprl Lemma : incr-binary-seq_wf
IBS ∈ Type
Proof
Definitions occuring in Statement : 
incr-binary-seq: IBS, 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ, 
and: P ∧ Q, 
top: Top, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
implies: P ⇒ Q, 
not: ¬A, 
uimplies: b supposing a, 
or: P ∨ Q, 
decidable: Dec(P), 
ge: i ≥ j , 
nat: ℕ, 
int_seg: {i..j-}, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
incr-binary-seq: IBS
Lemmas referenced : 
istype-le, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
le_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
because_Cache, 
independent_pairFormation, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
dependent_functionElimination, 
addEquality, 
dependent_set_memberEquality_alt, 
universeIsType, 
rename, 
setElimination, 
lambdaEquality_alt, 
hypothesisEquality, 
applyEquality, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
functionEquality, 
setEquality, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
IBS  \mmember{}  Type
Date html generated:
2019_10_30-AM-10_15_40
Last ObjectModification:
2019_06_28-PM-02_19_44
Theory : real!vectors
Home
Index