Step
*
of Lemma
rat-complex-iter-subdiv-diameter
∀[k,n:ℕ]. ∀[K:{K:n-dim-complex| 0 < ||K||} ]. ∀[j:ℕ].
(rat-complex-diameter(k;K'^(j)) ≤ ((r1/r(2^j)) * rat-complex-diameter(k;K)))
BY
{ (Auto THEN NatInd (-1)) }
1
.....basecase.....
1. k : ℕ
2. n : ℕ
3. K : {K:n-dim-complex| 0 < ||K||}
4. j : ℤ
⊢ rat-complex-diameter(k;K'^(0)) ≤ ((r1/r(2^0)) * rat-complex-diameter(k;K))
2
.....upcase.....
1. k : ℕ
2. n : ℕ
3. K : {K:n-dim-complex| 0 < ||K||}
4. j : ℤ
5. 0 < j
6. rat-complex-diameter(k;K'^(j - 1)) ≤ ((r1/r(2^(j - 1))) * rat-complex-diameter(k;K))
⊢ rat-complex-diameter(k;K'^(j)) ≤ ((r1/r(2^j)) * rat-complex-diameter(k;K))
Latex:
Latex:
\mforall{}[k,n:\mBbbN{}]. \mforall{}[K:\{K:n-dim-complex| 0 < ||K||\} ]. \mforall{}[j:\mBbbN{}].
(rat-complex-diameter(k;K'\^{}(j)) \mleq{} ((r1/r(2\^{}j)) * rat-complex-diameter(k;K)))
By
Latex:
(Auto THEN NatInd (-1))
Home
Index