Nuprl Lemma : rat-complex-iter-subdiv-diameter

[k,n:ℕ]. ∀[K:{K:n-dim-complex| 0 < ||K||} ]. ∀[j:ℕ].
  (rat-complex-diameter(k;K'^(j)) ≤ ((r1/r(2^j)) rat-complex-diameter(k;K)))


Proof




Definitions occuring in Statement :  rat-complex-diameter: rat-complex-diameter(k;K) rdiv: (x/y) rleq: x ≤ y rmul: b int-to-real: r(n) exp: i^n length: ||as|| nat: less_than: a < b uall: [x:A]. B[x] set: {x:A| B[x]}  natural_number: $n rational-cube-complex: n-dim-complex
Definitions unfolded in proof :  rge: x ≥ y nat_plus: + subtype_rel: A ⊆B decidable: Dec(P) assert: b ifthenelse: if then else fi  bnot: ¬bb sq_type: SQType(T) bfalse: ff btrue: tt it: unit: Unit bool: 𝔹 req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) rdiv: (x/y) true: True less_than': less_than'(a;b) squash: T less_than: a < b rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q guard: {T} rneq: x ≠ y rat-complex-iter-subdiv: Error :rat-complex-iter-subdiv,  rational-cube-complex: n-dim-complex le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y prop: and: P ∧ Q top: Top all: x:A. B[x] exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rmul-rinv3 rsub_wf rleq-implies-rleq rmul_preserves_rleq req_wf rleq_wf exp_step rmul-int-fractions req_functionality exp_wf_nat_plus mul_bounds_1b exp-positive-stronger rat-sub-div-diameter rleq_functionality_wrt_implies decidable__lt exp-positive exp_wf2 rat-complex-subdiv_wf rat-complex-iter-subdiv-pos-length istype-le int_term_value_subtract_lemma int_formula_prop_not_lemma intformnot_wf decidable__le subtract_wf Error :rat-complex-iter-subdiv_wf,  Error :rat-complex-subdiv-non-nil,  less_than_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_lt_int eqtt_to_assert lt_int_wf primrec-unroll real_term_value_var_lemma real_term_value_const_lemma real_term_value_mul_lemma real_term_value_sub_lemma real_polynomial_null req-iff-rsub-is-0 rmul-identity1 rinv1 rmul_functionality req_transitivity req_weakening rleq_functionality rleq_weakening_equal itermMultiply_wf itermSubtract_wf rinv_wf2 rless_wf rless-int int-to-real_wf rdiv_wf rmul_wf rat-complex-diameter_wf exp0_lemma primrec0_lemma istype-nat rational-cube_wf length_wf rational-cube-complex_wf subtract-1-ge-0 le_witness_for_triv istype-less_than ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma istype-void int_formula_prop_and_lemma istype-int intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf full-omega-unsat nat_properties
Rules used in proof :  multiplyEquality applyEquality dependent_set_memberEquality_alt cumulativity instantiate promote_hyp equalityElimination unionElimination baseClosed imageMemberEquality inrFormation_alt closedConclusion equalityIstype because_Cache setIsType isectIsTypeImplies inhabitedIsType functionIsTypeImplies equalitySymmetry equalityTransitivity productElimination universeIsType independent_pairFormation sqequalRule voidElimination isect_memberEquality_alt dependent_functionElimination int_eqEquality lambdaEquality_alt dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality lambdaFormation_alt intWeakElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:\{K:n-dim-complex|  0  <  ||K||\}  ].  \mforall{}[j:\mBbbN{}].
    (rat-complex-diameter(k;K'\^{}(j))  \mleq{}  ((r1/r(2\^{}j))  *  rat-complex-diameter(k;K)))



Date html generated: 2019_11_04-PM-04_44_00
Last ObjectModification: 2019_10_31-PM-00_33_30

Theory : real!vectors


Home Index